Specific cytotoxicity by sensitized mouse thymus cells on tissue culture target cells

1970 ◽  
Vol 1 (6) ◽  
pp. 619-631 ◽  
Author(s):  
Henric Blomgren ◽  
Mitsuo Takasugi ◽  
Sten Friberg
2008 ◽  
Vol 82 (14) ◽  
pp. 7034-7046 ◽  
Author(s):  
Eike Steinmann ◽  
Christiane Brohm ◽  
Stephanie Kallis ◽  
Ralf Bartenschlager ◽  
Thomas Pietschmann

ABSTRACT Recently, complete replication of hepatitis C virus (HCV) in tissue culture was established using the JFH1 isolate. To analyze determinants of HCV genome packaging and virion assembly, we developed a system that supports particle production based on trans-packaging of subgenomic viral RNAs. Using JFH1 helper viruses, we show that subgenomic JFH1 replicons lacking the entire core to NS2 coding region are efficiently encapsidated into infectious virus-like particles. Similarly, chimeric helper viruses with heterologous structural proteins trans-package subgenomic JFH1 replicons. Like authentic cell culture-produced HCV (HCVcc) particles, these trans-complemented HCV particles (HCVTCP) penetrate target cells in a CD81 receptor-dependent fashion. Since HCVTCP production was limited by competition between the helper and subgenomic RNA and to avoid contamination of HCVTCP stocks with helper viruses, we created HCV packaging cells. These cells encapsidate various HCV replicons with high efficiency, reaching infectivity titers up to 106 tissue culture infectious doses 50 per milliliter. The produced particles display a buoyant density comparable to HCVcc particles and can be propagated in the packaging cell line but support only a single-round infection in naïve cells. Together, this work demonstrates that subgenomic HCV replicons are assembly competent, thus excluding cis-acting RNA elements in the core-to-NS2 genomic region essential for RNA packaging. The experimental system described here should be helpful to decipher the mechanisms of HCV assembly and to identify RNA elements and viral proteins involved in particle formation. Similar to other vector systems of plus-strand RNA viruses, HCVTCP may prove valuable for gene delivery or vaccination approaches.


1985 ◽  
pp. 145-152
Author(s):  
Yutaka Zinnaka ◽  
Sumiaki Tsuru ◽  
Mayumi Oguchi ◽  
Nobuya Ohtomo ◽  
Toyoharu Muraoka

Rheumatology ◽  
2019 ◽  
Vol 58 (10) ◽  
pp. 1850-1860 ◽  
Author(s):  
Meilang Xue ◽  
Suat Dervish ◽  
Kelly J McKelvey ◽  
Lyn March ◽  
Fang Wang ◽  
...  

Abstract Objectives To investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models. Methods RASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models. Results In vitro, APC inhibited IL-1β, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1β, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA. Conclusion APC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.


2008 ◽  
Vol 26 (1) ◽  
pp. 225-228 ◽  
Author(s):  
Xu-Feng LIU ◽  
Wen-Chao GUAN ◽  
Wen-Shan KE

1968 ◽  
Vol 128 (4) ◽  
pp. 855-874 ◽  
Author(s):  
W. J. Martin ◽  
J. F. A. P. Miller

In this series of papers it has been shown that the immune response of mice to sheep erythrocytes requires the participation of two classes of lymphoid cells. Thymus-derived cells initially react with antigen and then interact with another class of cells, the antibody-forming cell precursors, to cause their differentiation to antibody-forming cells. Antilymphocyte globulin depressed the ability of mice to respond to sheep erythrocytes. This effect was more marked when the antigen was injected intraperitoneally than intravenously, and occurred only when the antilymphocyte globulin was given before or simultaneously with antigen. Injection of thymus cells restored to near normal the ability to respond to an intravenous injection of sheep erythrocytes. Spleen cells from antilymphocyte globulin-treated mice gave a weak adoptive immune response in irradiated recipients. The addition of thymus cells however enabled a response similar to that given by normal spleen cells. When thymectomized irradiated recipients were used, normal spleen cells continued to give a higher response to a challenge of sheep erythrocytes at 2 and 4 wk postirradiation than did spleen cells from ALG-treated donors. This result is more consistent with the notion that thymus-derived target cells are eliminated, rather than temporarily inactivated, by antilymphocyte globulin. These findings suggest that, in vivo, antilymphocyte globulin acts selectively on the thymus-derived antigen-reactive cells.


1971 ◽  
Vol 2 (4) ◽  
pp. 285-299 ◽  
Author(s):  
Henric Blomgren ◽  
Erik Svedmyr

Sign in / Sign up

Export Citation Format

Share Document