synovial fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

1468
(FIVE YEARS 289)

H-INDEX

81
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yilin Wang ◽  
Çağlar Çil ◽  
Margaret M. Harnett ◽  
Miguel A. Pineda

The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.


Author(s):  
Wen Ting Hao ◽  
Lu Huang ◽  
Wei Pan ◽  
Yi Le Ren

Objectives: In this study, we aimed to investigate whether glutathione (GSH) could decrease the secretion of reactive oxygen species (ROS), reduce inflammation, and modulate the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/AKT (PTEN/PI3K/AKT) in synovial fibroblasts (SFs). Patients and methods: A total of 30 DBA/1J female mice were used in this study. The release of ROS in MH7A cells was examined using a ROS assay kit. The effects of GSH on the messenger ribonucleic acid (mRNA) expression and protein levels of inflammatory cytokines were determined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) in mouse SFs and MH7A cells, respectively. The PTEN/PI3K/AKT pathway was investigated via Western blotting. The effects of buthionine-sulfoximine (BSO), as an inhibitor of GSH, on these molecules were examined. Results: The ROS were decreased after GSH treatment, and the mRNA levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)-1, MMP-3, were also significantly inhibited after GSH stimulation. However, the IL-10 levels were enhanced, and GSH increased the expression of PTEN. The GSH suppressed the activation of phosphorylated (p)-PI3K and p-AKT. The supplementation of the BSO restored the activation of PI3K/AKT pathway with a high production of ROS. The levels of TNF-α, IL-1β and IL-6 were also elevated, when the BSO was added. Conclusion: These findings suggest that GSH can act as an inflammatory suppressor by downregulating the PTEN/PI3K/AKT pathway in MH7A cells. These data indicated a novel function of GSH for improving the inflammation of RA SFs and may help to alleviate the pathological process of RA.


2021 ◽  
Vol 22 (24) ◽  
pp. 13581
Author(s):  
Jana Janockova ◽  
Jana Matejova ◽  
Marko Moravek ◽  
Lucia Homolova ◽  
Lucia Slovinska ◽  
...  

Mesenchymal stem cells (MSCs) are of great interest to scientists due to their application in cell therapy of many diseases, as well as regenerative medicine and tissue engineering. Recently, there has been growing evidence surrounding the research based on extracellular vesicles (EVs), especially small EVs (sEVs)/exosomes derived from MSCs. EVs/exosomes can be secreted by almost all cell types and various types of EVs show multiple functions. In addition, MSCs-derived exosomes have similar characteristics and biological activities to MSCs and their therapeutic applications are considered as a safe strategy in cell-free therapy. The aim of this study was the characterization of MSCs isolated from the chorion (CHo-MSCs) of human full-term placenta, as well as the isolation and analysis of small EVs obtained from these cells. Accordingly, in this study, the ability of small EVs’ uptake is indicated by synovial fibroblasts, osteoblasts and periosteum-derived MSCs. Improvement in the understanding of the structure, characteristics, mechanism of action and potential application of MSCs-derived small EVs can provide new insight into improved therapeutic strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Achudhan ◽  
Shan-Chi Liu ◽  
Yen-You Lin ◽  
Chien-Chung Huang ◽  
Chun-Hao Tsai ◽  
...  

Extracts from Taiwan’s traditional medicinal mushroom, Antrodia cinnamomea, exhibit anti-inflammatory activities in cellular and preclinical studies. However, this paper is the first to report that Antcin K, a triterpenoid isolated from A. cinnamomea, inhibits proinflammatory cytokine production in human rheumatoid synovial fibroblasts (RASFs), which are major players in rheumatoid arthritis (RA) disease. In our analysis of the mechanism of action, Antcin K inhibited the expression of three cytokines (tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1β] and IL-8) in human RASFs; cytokines that are crucial to RA synovial inflammation. Notably, incubation of RASFs with Antcin K reduced the phosphorylation of the focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and nuclear factor-κB (NF-κB) signaling cascades, all of which promote cytokine production in RA. Intraperitoneal injections of Antcin K (10 mg/kg or 30 mg/kg) attenuated paw swelling, cartilage degradation and bone erosion, and decreased serum levels of TNF-α, IL-1β, IL-8 in collagen-induced arthritis (CIA) mice; in further experiments, IL-6 levels were similarly reduced. The inhibitory effects of Antcin K upon TNF-α, IL-1β and IL-8 expression in human RASFs was achieved through the downregulation of the FAK, PI3K, AKT and NF-κB signaling cascades. Our data support clinical investigations using Antcin K in RA disease.


2021 ◽  
pp. annrheumdis-2021-220875
Author(s):  
Rebecca A Symons ◽  
Fabio Colella ◽  
Fraser L Collins ◽  
Alexandra J Rafipay ◽  
Karolina Kania ◽  
...  

ObjectiveWe aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction.MethodsSynovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap–Tead reporter cells and Yap–Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells.ResultsYap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen−), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1β, Jak-dependently activated Yap and induced Yap–Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA.ConclusionsOur findings uncover the IL-6–Yap–Snail signalling axis in pathogenic SF in inflammatory arthritis.


Author(s):  
David Achudhan ◽  
Shan‐Chi Liu ◽  
Yen‐You Lin ◽  
Hsiang‐Ping Lee ◽  
Shih‐Wei Wang ◽  
...  

2021 ◽  
Author(s):  
Zixuan Xu ◽  
Wenting Hao ◽  
Daxiang Xu ◽  
Yan He ◽  
Ziyi Yan ◽  
...  

Abstract Rheumatoid arthritis (RA) is a chronic autoimmune joint disease that causes cartilage and bone damage or even disability, seriously endangering human health. Chronic synovial inflammation has been shown to play a vital role in the disease sustainability. Therefore, down-regulation of synovial inflammation is considered to be an effective discipline for RA therapy. Polyene phosphatidylcholine (PPC) is a hepatoprotective agent, which was observed to inhibit inflammation in macrophages and prevent collagen-induced arthritis (CIA) of rats in our previous study. However, the underlying mechanism remains unclear. The present study further reported that PPC can inhibit the synovial inflammation. In lipopolysaccharide (LPS)-stimulated primary synovial fibroblasts (SFs) of mice, PPC significantly decreased pro-inflammatory cytokines production while increasing anti-inflammatory cytokines level. In this process, PPC down-regulated the expression of TLR-2 and their downstream signaling molecules such as MyD88, p-ERK1/2, p-JNK1/2, p-P38 in the MAPK pathway and p-IκBα and NF-κB-p65 in NF-kB pathway. Moreover, the inhibitory effect of PPC on the above molecules and cytokines was weakened after the use of TLR-2 agonist Pam3CSK4. However, PPC lost its anti-inflammatory effect and showed an activation of MAPK and NF-kB pathways in the TLR-2-/- primary SFs after exposure to LPS. Furthermore, these results were confirmed in the SFs from the CIA mouse ex vivo. Collectively, this study demonstrated that PPC can alleviate synovial inflammation through TLR-2 mediated MAPK and NF-κB pathways, which can be proposed to be a potential drug candidate for RA therapy.


Sign in / Sign up

Export Citation Format

Share Document