Characteristics of secondary cytotoxic T-cell responses in mice infected with influenza A viruses

1978 ◽  
Vol 36 (2) ◽  
pp. 345-353 ◽  
Author(s):  
R.B. Effros ◽  
J. Bennink ◽  
P.C. Doherty
Vaccine ◽  
1999 ◽  
Vol 18 (7-8) ◽  
pp. 681-691 ◽  
Author(s):  
Anders Fomsgaard ◽  
Henrik V Nielsen ◽  
Nikolai Kirkby ◽  
Karin Bryder ◽  
Sylvie Corbet ◽  
...  

2001 ◽  
Vol 13 (11) ◽  
pp. 1373-1381 ◽  
Author(s):  
Thomas M. Lawson ◽  
Stephen Man ◽  
Sheila Williams ◽  
Adrianus C. M. Boon ◽  
Maria Zambon ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Zekun Mu ◽  
Barton F. Haynes ◽  
Derek W. Cain

The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host’s cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.


2005 ◽  
Vol 18 (4) ◽  
pp. 234-242 ◽  
Author(s):  
Silvia Garbelli ◽  
Stefania Mantovani ◽  
Belinda Palermo ◽  
Claudia Giachino

2004 ◽  
Vol 169 (12) ◽  
pp. 1322-1330 ◽  
Author(s):  
Frédéric Ebstein ◽  
Carole Sapede ◽  
Pierre-Joseph Royer ◽  
Marie Marcq ◽  
Catherine Ligeza-Poisson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document