Characterization of cytotoxic cells generated from in vitro cultures of murine bone marrow cells

1985 ◽  
Vol 92 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Gary R. Klimpel ◽  
Marcella Sarzotti ◽  
Victor E. Reyes ◽  
Kathleen D. Klimpel
1983 ◽  
Vol 11 (3) ◽  
Author(s):  
Philip Lazarus ◽  
JudithSt Germina ◽  
Maurice Dufour ◽  
Greg Palmer ◽  
Deborah Wallace ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2000 ◽  
Vol 14 (4) ◽  
pp. 735-739 ◽  
Author(s):  
MG Cipolleschi ◽  
E Rovida ◽  
Z Ivanovic ◽  
V Praloran ◽  
M Olivotto ◽  
...  

2007 ◽  
Vol 85 (5) ◽  
pp. 384-389 ◽  
Author(s):  
Kyoko Suzuki ◽  
Nobutaka Kiyokawa ◽  
Tomoko Taguchi ◽  
Hisami Takenouchi ◽  
Masahiro Saito ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Bruno José Martins da Silva ◽  
Ana Paula D Rodrigues ◽  
Luis Henrique S Farias ◽  
Amanda Anastácia P Hage ◽  
Jose Luiz M Do Nascimento ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1758-1758
Author(s):  
Axel Schambach ◽  
Bernhard Schiedlmeier ◽  
Jens Bohne ◽  
Dorothee von Laer ◽  
Geoff Margison ◽  
...  

Abstract T20 is a 36-amino-acid peptide that binds to HIV-1 gp41 and thereby acts as a fusion inhibitor, thus mediating potent and selective inhibition of HIV-1 entry in vitro and in vivo. An extended peptide expressed as an artificial, membrane-bound molecule (mbC46) efficiently inhibits HIV infection of primary human T-cells following retroviral vector mediated gene transfer (Egelhofer et al., J Virol, 2004). To develop an even more stringent approach to HIV gene therapy, we targeted hematopoietic stem cells. In 3 experimental groups of C57BL/6 mice (9 animals/group), we investigated the long-term toxicity of murine bone marrow cells transduced with M87o, a therapeutic vector designed to coexpress mbC46 and an HIV-derived RNA RRE-decoy to inhibit HIV replication. As controls we used the same vector containing an inactive C46 peptide and mock-transduced cells. Blood samples were collected monthly. Donor chimerism and transgene expression in multiple lineages were determined by FACS analysis and transgene integration was measured by real time PCR. Six months after transplantation, 4 mice per group were sacrificed and the remaining 5 mice per group were observed for another 6 months. In addition to the parameters mentioned above, we performed complete histopathology, blood counts and clinical biochemistry. Donor chimerism in all groups ranged from 82 – 94% (day 190 and day 349). In the M87o group, 60% of donor cells expressed mbC46. FACS data showed persisting transgene expression in T-cells (CD4, CD8, 65%), B-cells (B220, 46%), myeloid cells (CD11b, 68%), platelets (CD41, 19%), and RBC (60%) of the peripheral blood and bone marrow cells. Highly sustained gene marking (2–4 copies/genome) was noticed on day 190. To reveal latent malignant clones potentially originating from side effects of the genetic manipulation, 1x106 bone marrow cells from 4 primary recipients were transplanted into lethally irradiated secondary recipients (3 recipients/primary mouse) and these mice were observed for 8 months. All together, we could not observe any evidence for leukemogenic capacity. Analysis of peripheral blood and bone marrow showed a similar transgene expression pattern compared to the primary mice. To generate a complete chimerism of transgenic cells, we chose the human drug resistance gene methylguanine-methyltransferase (MGMT, P140K) to select for mbC46-transduced stem cells in vitro and in vivo. Different coexpression strategies were tested. Function of the MGMT protein was confirmed in a quantitative alkyltransferase assay and in a cytotoxicity assay using BCNU or temozolomide. In vitro selection of transduced 32D and PM1 cells with benzylguanine and BCNU showed >95% positive cells with evidence of polyclonal survival. Transduced PM1 cells underwent an HIV challenge assay. In vivo experiments in a murine bone marrow transplantation setting are ongoing to determine the potency and safety of combined retroviral expression of mbC46 and MGMT in relevant preclinical models. Successful conclusion of these studies will hopefully result in a phase I clinical trial testing the concept of generating an HIV-resistant autologous hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1185-1185
Author(s):  
Adrian P. Zarebski ◽  
Avinash M. Baktula ◽  
Sudeep Basu ◽  
John O. Trent ◽  
H. Leighton Grimes

Abstract The Growth factor independence 1 (Gfi1) zinc finger transcriptional repressor is a T cell leukemia oncoprotein that also plays a crucial role in granulopoiesis in both mice and humans. A single point mutation in the amino terminal SNAG repressor domain (P2A) is able to ablate both Gfi1 transcriptional repression activity and linked oncogenic activity in T lymphoctyes. Mice deleted for Gfi1 are lymphopenic, but also lack mature neutrophils. Gfi1−/− mice display a profound block to myeloid differentiation and abnormal promyelocytes accumulate in the blood. Humans with Severe Congenital Neutropenia (SCN) with heterozygous mutations in Gfi1 have similar abnormal promyelocytes. We introduced the SCN patient Gfi1N382S DNA-binding-deficient mutation into murine Gfi1 and overexpressed it in primary murine bone marrow cells. While expression of the wild type Gfi1 resulted almost exclusively in mature granulocyte differentiation, forced expression of the N382S mutant resulted almost exclusively in monocytic differentiation. Flow cytometric analysis revealed a population of N382S-expressing cells with markers of both monocytes and neutrophils resembling the atypical Gfi1−/− promyelocytes. To determine if mutation of the N382 residue is uniquely able to block Gfi1 function, we constructed a virtual model of Gfi1 zinc fingers 3, 4 and 5 interacting with DNA. The model revealed several possible protein-DNA interactions. In order to validate the model we mutated those residues to alanine and performed EMSA with in vitro transcribed/translated proteins. The same alanine substitution mutants were expressed in primary murine bone marrow and tested for their ability to control myelopoiesis. Lack of DNA binding in EMSA tightly correlated with impaired granulopoesis in our in vitro model, suggesting the necessity of intact DNA binding for proper Gfi1 function. These data suggested that the non-DNA binding mutants were able to inhibit repression by wild type endogenous Gfi1, perhaps through the sequestration of limiting corepressor proteins. The Gfi1P2A mutant is unable to repress transcription. We therefore tested the effect of Gfi1P2A expression on myelopoiesis and found that it blocked granulopoiesis equivalently to Gfi1N382S. To rigorously determine whether the titration of limiting corepressors was the cause of N382S neutropenia, we constructed a compound mutant containing both N382S and P2A and expressed it in primary murine bone marrow cells. Expression of Gfi1P2A-N382S had little effect on myelopoiesis. We conclude that SCN patients with heterozygous Gfi1 mutations have blocked granulopoiesis because the non-DNA binding mutant protein competes with the wild type allele for titratable associated cofactors.


Sign in / Sign up

Export Citation Format

Share Document