Application of the NBRI accelerated mortar bar test to siliceous carbonate aggregates produced in the St. Lawrence Lowlands (Quebec, Canada) part 2: Proposed limits, rates of expansion, and microstructure of reaction products

1991 ◽  
Vol 21 (6) ◽  
pp. 1069-1082 ◽  
Author(s):  
B. Fournier ◽  
M.A. Bérubé
2021 ◽  
Author(s):  
Robert C Johnson

This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates. The study evaluated the variability of the Accelerated Mortar Bar Test due to test variables as well as the single and multi-laboratory variation. The variability of the Concrete Microbar Test due to test variables and the correlation to results from Accelerated Mortar Bar and Concrete Prism Test results were also evaluated. The tests were corroborated by comparing the porosity, permeability and alkali binding capacity of samples tested by the accelerated tests. It was found that the Accelerated Mortar Bar Test provides acceptable results when the test variables, such as crushing methods and absorption values, are carried out and evaluated properly. The Concrete Microbar Test was found to underestimate the expansion of reactive aggregates. However, the same test was found to provide good correlation to the expansion results of Concrete Prisms incorporating Supplementary Cementing Materials when the test duration was increased.


2013 ◽  
Vol 37 ◽  
pp. 143-153 ◽  
Author(s):  
Seyed M.H. Shafaatian ◽  
Alireza Akhavan ◽  
Hamed Maraghechi ◽  
Farshad Rajabipour

2013 ◽  
Vol 2 (1) ◽  
pp. 20120030 ◽  
Author(s):  
Matthew P. Adams ◽  
Angela Jones ◽  
Sean Beauchemin ◽  
Robert Johnson ◽  
Benoit Fournier ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 1428-1432
Author(s):  
Tong Chao Liu ◽  
Bo Xiao ◽  
Gu Hua Li ◽  
Nian Hong Luo ◽  
Long Sheng Zhang

The study used the method of accelerated mortar bar test to study alkali aggregate reaction (ASR) with sandstone aggregate. Both fly ash and slag can inhibit the expansion of mortar bar. Results show that 50% slag can inhibit ASR reluctantly, but 10% fly ash and 20% slag can inhibit ASR very well, and the inhibitory effect of fly ash is far better than slag. Because of the high content of CaO in slag, it has inhibit and promote aspects, when the ASR is fierce, slag can inhibit ASR, otherwise slag can promote ASR.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Federico Aguayo ◽  
Anthony Torres ◽  
Tate Talamini ◽  
Kevin Whaley

This study presents the hydration reactivity and alkali silica reaction (ASR) of ultrahigh strength concrete (UHSC) that has been made more sustainable by using spent foundry sand. Spent foundry sand not only is sustainable but has supplementary cementitious material (SCM) characteristics. Two series of UHSC mixtures were prepared using a nonreactive and reactive sand (in terms of ASR) to investigate both the impact of a more reactive aggregate and the use of spent foundry sand. Conduction calorimetry was used to monitor the heat of hydration maintained under isothermal conditions, while ASR was investigated using the accelerated mortar bar test (AMBT). Additionally, the compressive strengths were measured for both series of mixtures at 7, 14, and 28 days to confirm high strength requirements. The compressive strengths ranged from 85 MPa (12,345 psi) to 181.78 MPa (26,365 psi). This result demonstrates that a UHSC mixture was produced. The calorimetry results revealed a slight acceleration in the heat of hydration flow curve compared to the control from both aggregates indicating increased hydration reactivity from the addition of foundry waste. The combination of foundry sand and reactive sand was found to increase ASR reactivity with increasing additions of foundry sand up to 30% replacement.


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2021 ◽  
Author(s):  
Robert C Johnson

This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates. The study evaluated the variability of the Accelerated Mortar Bar Test due to test variables as well as the single and multi-laboratory variation. The variability of the Concrete Microbar Test due to test variables and the correlation to results from Accelerated Mortar Bar and Concrete Prism Test results were also evaluated. The tests were corroborated by comparing the porosity, permeability and alkali binding capacity of samples tested by the accelerated tests. It was found that the Accelerated Mortar Bar Test provides acceptable results when the test variables, such as crushing methods and absorption values, are carried out and evaluated properly. The Concrete Microbar Test was found to underestimate the expansion of reactive aggregates. However, the same test was found to provide good correlation to the expansion results of Concrete Prisms incorporating Supplementary Cementing Materials when the test duration was increased.


Sign in / Sign up

Export Citation Format

Share Document