supplementary cementing materials
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2021 ◽  
Author(s):  
Noura Sinno ◽  
Medhat Shehata

Late expansions due to alkali-silica reaction were observed in field samples for some aggregates and supplementary cementing materials (SCM) combinations despite meeting the 2-year expansion criterion of the concrete prism test. This fosters a research into the effect of sample geometry and aggregate reactivity on alkali leaching and expansion of lab samples. Larger samples showed less leaching compared to standard prisms. Cylinders of 100 mm-diameter showed higher expansion than 75 mm-standard prisms; however, both sample shapes showed similar expansions for one tested aggregate when used with SCM. Alkali leaching from concrete samples and alkali release from some aggregates could lead to cylindrical samples having higher expansion and better correlation to field samples compared to standard concrete prisms.


2021 ◽  
Author(s):  
Noura Sinno ◽  
Medhat Shehata

Late expansions due to alkali-silica reaction were observed in field samples for some aggregates and supplementary cementing materials (SCM) combinations despite meeting the 2-year expansion criterion of the concrete prism test. This fosters a research into the effect of sample geometry and aggregate reactivity on alkali leaching and expansion of lab samples. Larger samples showed less leaching compared to standard prisms. Cylinders of 100 mm-diameter showed higher expansion than 75 mm-standard prisms; however, both sample shapes showed similar expansions for one tested aggregate when used with SCM. Alkali leaching from concrete samples and alkali release from some aggregates could lead to cylindrical samples having higher expansion and better correlation to field samples compared to standard concrete prisms.


2021 ◽  
Author(s):  
Noura Sinno ◽  
Medhat Shehata

Late expansions due to alkali-silica reaction were observed in field samples for some aggregates and supplementary cementing materials (SCM) combinations despite meeting the 2-year expansion criterion of the concrete prism test. This fosters a research into the effect of sample geometry and aggregate reactivity on alkali leaching and expansion of lab samples. Larger samples showed less leaching compared to standard prisms. Cylinders of 100 mm-diameter showed higher expansion than 75 mm-standard prisms; however, both sample shapes showed similar expansions for one tested aggregate when used with SCM. Alkali leaching from concrete samples and alkali release from some aggregates could lead to cylindrical samples having higher expansion and better correlation to field samples compared to standard concrete prisms.


2021 ◽  
Author(s):  
Jimmy Xu

The effect of supplementary cementing materials (SCM) on internal sulphate attack in mortars was evaluated. Different types and levels of SCM were investigated where a mixture of hemihydrate and calcium carbonate fillers were used in the mixtures as a source of sulphate and carbonate, respectively. In addition, mixtures containing aggregates with high sulphate content were also examined to understand the role of sulphate from aggregate on the expansion. It has been found that the internal sulphate attack can be reduced through the use of SCM with high reactive alumina such as Metakaolin. It was hypothesised that the beneficial effect of Metakaolin lies in its ability to reduce ion mobility within the matrix, and perhaps raise the alumina/sulphur in the system favoring the formation of non-expansive monosulphoaluminate. However, at high levels of sulphate, none of the SCM provided successful protection against internal sulphate attack.


2021 ◽  
Author(s):  
Syed Ahmed

Self-consolidating concrete (SCC) has been gaining greater interest over the past decades with its excellent offerings of efficiency, beauty, and savings. Due to its high flow ability, resistance to bleeding, and non-segregating properties, SCC holds tremendous potential for use in the construction industry. SCC requires no vibration and can fill capacities, including the ones with even the most congested reinforcements. Since SCC can be obtained by incorporating supplementary cementing materials (SCMs) such as silica fume and metakaolin. It is crucial to develop and test different SCC mixtures with different volumes of SCMs to evaluate fresh and mechanical properties. Although silica fume is used in the production of SCC, the use of metakaoline in SCC is new. In this project, eleven SCC mixtures having different volumes of silica fume and metakaolin are developed. In addition, the influence of the above mentioned pozzolans (silica fume and metakaolin) on the fresh and mechanical properties are analyzed. Recommendations on fresh and mechanical properties of silica fume and metakaoline based SCC mixtures are also provided.


2021 ◽  
Author(s):  
Asaad Mousa

Self-consolidation concrete (SCC) is the latest version of high performance concrete with excellent workability and high resistance to segregation and bleeding. The main objective of this project is to study the rheological properties of SCC incorporating natural and industrial pozzolans (silica fume and metakaolin, repectively) as supplementary cementing materials (SCMs). Use of such pozzolanic materials in the development of environmentally friendly and cost effective SCC can lead to sustainable construction. In this project eleven SCC mixtures are developed by incorporating different percentages of silica fume (SF) and metakaolin (MK) as replacement of cement. However, the water cement ratio of all SCC mixtures are optimized so that all mixtures satisfied the requirements of SCC in terms of fresh properties such as workability, stability, passing ability, bleeding and segregation resistance. This study particularly concentrates on evaluation of the rheological properties such as viscosity and yield stress of developed silica fume and metakaolin based SCC mixtures. The influence of SF and MK dosages on viscosity and yield stress of SCC mixtures are evaluated. Correlations among fresh and rheological properties are developed and critically reviewed to make recommendations.


2021 ◽  
Author(s):  
Syed Ahmed

Self-consolidating concrete (SCC) has been gaining greater interest over the past decades with its excellent offerings of efficiency, beauty, and savings. Due to its high flow ability, resistance to bleeding, and non-segregating properties, SCC holds tremendous potential for use in the construction industry. SCC requires no vibration and can fill capacities, including the ones with even the most congested reinforcements. Since SCC can be obtained by incorporating supplementary cementing materials (SCMs) such as silica fume and metakaolin. It is crucial to develop and test different SCC mixtures with different volumes of SCMs to evaluate fresh and mechanical properties. Although silica fume is used in the production of SCC, the use of metakaoline in SCC is new. In this project, eleven SCC mixtures having different volumes of silica fume and metakaolin are developed. In addition, the influence of the above mentioned pozzolans (silica fume and metakaolin) on the fresh and mechanical properties are analyzed. Recommendations on fresh and mechanical properties of silica fume and metakaoline based SCC mixtures are also provided.


2021 ◽  
Author(s):  
Matthew Piersanti

As concrete reaches the end of its service life, it is demolished and placed in landfills, which is not sustainable as this consumes land space. Many demolished structures are crushed into recycled concrete aggregate (RCA) and used in new construction work to reduce concrete waste. To be used in concrete, the effects of RCA on the new structures should be carefully examined. The RCA studied in this research is an alkali-silica reactive gravel from Sudbury, Ontario. The RCA was obtained from different elements of a 20-year old bridge that suffered different levels of deterioration. It was determined that the level of deterioration that affected the previous structure does not significantly affect the expansion that will occur in the new structure. It was also determined that the expansion could be mitigated through the use of supplementary cementing materials although higher levels are required compared those required for the virgin aggregate.


Sign in / Sign up

Export Citation Format

Share Document