sulfide minerals
Recently Published Documents





Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 100
Ivica Ristović ◽  
Darina Štyriaková ◽  
Iveta Štyriaková ◽  
Jaroslav Šuba ◽  
Emilija Širadović

Flotation wastes are becoming a valuable secondary raw material and source of many metals and semimetals worldwide with the possibilities of industrial recycling. The flotation tailings contain oxide and sulfide minerals that have not been sufficiently stabilized and form acidic mine waters, which in turn contaminate groundwater, rivers, and reservoi6sediments. An effective way to recycle these mine wastes is to recover the metals through leaching. While the focus is on acid bioleaching by iron- and sulfur-oxidizing bacteria, alkaline leaching, and the removal of iron-containing surface coatings on sulfide minerals contribute significantly to the overall environmental efficiency of leaching. For this study, static and percolate bioleaching of copper from flotation waste at the Bor copper mine in Serbia was investigated in alkaline and then acidic environments. The aim of the study was to verify the effect of alkaline pH and nutrient stimulation on the bioleaching process and element extraction. A sample was taken from a mine waste site, which was characterized by XRF analyses. The concentration of leached copper was increased when copper oxide minerals dissolved during alkaline bioleaching. The highest copper yield during alkaline bioleaching was achieved after 9 days and reached 67%. The addition of nutrients in acidic medium enhanced the degradation of sulfide minerals and increased Cu recovery to 74%, while Fe and Ag recoveries were not significantly affected. Combined bioleaching with alkaline media and iron- and sulfur-oxidizing bacteria in acidic media should be a good reference for ecological Cu recovery from copper oxide and sulfide wastes.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Bo Yang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Lingyun Huang

Terpenic oil (TO) is commonly used as a flotation frother for the selective separation of sulfide minerals. As a frother, most reports have mainly focused on its effect on froth stability and froth entrainment, whereas its influence on the floatability of sulfide minerals has received little attention. In this work, the influence of TO on the flotation behavior of sphalerite was investigated by using microflotation tests, contact angle and zeta potential measurements, and FT-IR and SEM-EDS analyses. Microflotation tests conducted in a modified Hallimond tube indicated that compared with the collector potassium butyl xanthate (KBX), the flotation recovery of sphalerite was significantly increased when TO was added to the pulp, but the recovery of Cu-activated sphalerite with the addition of TO was lower than that with the addition of KBX. Contact angle measurements demonstrated that the contact angle of sphalerite was distinctly increased by the addition of TO, but the contact angle of sphalerite treated with TO was lower than that treated with KBX after Cu activation. Zeta potential measurements demonstrated that the zeta potential of sphalerite particles was slightly decreased when treated with TO, and the isoelectric point (IEP) was decreased from 3.3 to 3.1 due to the interaction of TO with sphalerite particles. FT-IR and SEM-EDS confirmed that TO could be adsorbed on the sphalerite surface on the formation of the oil film due to its low solubility, thereby increasing the surface hydrophobicity of the sphalerite. In addition, the TO absorbed on the surface acts as a bridging role and promotes the hydrophobic agglomeration of sphalerite particles. These results suggest that except for froth entrainment, the influence of TO on the flotation behavior of sphalerite may be another reason for the misreporting of sphalerite in concentrates.

2021 ◽  
Vol 9 (12) ◽  
pp. 2529
Sebastian Stasik ◽  
Juliane Schmidt ◽  
Katrin Wendt-Potthoff

The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L−1 day−1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L−1 day−1; p < 0.0001). The addition of KNO3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L−1 day−1; p = 0.0474), with complete transformation to SO42− coupled to NO3− consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates.

2021 ◽  
Vol 35 (1) ◽  
pp. 41-50
Svetlana Bratkova

The formation of acid mine drainage (AMD) is a serious environmental problem in areas with mining and processing industries worldwide. Their generation is associated with chemical and biological processes of oxidation of sulfide minerals, mainly pyrite. Sources of AMD can be deposits of sulfide minerals and coal with a high content of pyrite sulfur, mining waste and some tailings. The impact of AMD on surface and groundwater in mining areas continues for decades after the cessation of extraction. An example of the negative impact of generated acid mine drainage on the state of surface waters is in the region of Madzharovo. Years after the cessation of mining, the waters at the discharge points "Momina Skala", "Harman Kaya" and "Pandak Dere" are characterized by low pH values and high concentrations of iron, copper, zinc, cadmium, lead and manganese.

2021 ◽  
Vol 59 (6) ◽  
pp. 1339-1362
Malose M. Langa ◽  
Pedro J. Jugo ◽  
Matthew I. Leybourne ◽  
Danie F. Grobler

ABSTRACT The UG-2 chromitite layer, with its elevated platinum-group element content, is a key marker horizon in the eastern and western limbs of the Bushveld Igneous Complex and the largest platinum-group element chromite-hosted resource of its kind in the world. In contrast, much less is known about its stratigraphic equivalent in the northern limb, the “UG-2 equivalent” (UG-2E) chromitite. Recent studies on chromite mineral chemistry show similarities between the UG-2 and sections of the UG-2E, but also that the UG-2E was partially contaminated by assimilation of local metasedimentary rocks. Here, we provide a detailed characterization of sulfide minerals and platinum-group minerals in a suite of samples from the UG-2E and compare the results with data obtained from a reference suite of samples from the UG-2. Results from petrographic observations, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, quantitative evaluation of materials by scanning electron microscopy, and δ34S isotopes show that: (1) sulfide minerals in the UG-2E and UG-2 consist mainly of pentlandite-chalcopyrite-pyrrhotite, but pyrrhotite is significantly more abundant in the UG-2E and almost absent in the UG-2; (2) iron contents in pentlandite from the UG-2E are significantly higher than in the UG-2; (3) platinum-group element contents within sulfide minerals are different between the two chromitites; (4) UG-2E platinum-group minerals are dominated by arsenides and bismuthotellurides, and by alloys and platinum-group element-sulfide minerals in the UG-2; (5) sulfide mineral chemistry and δ34S values indicate some crustal contamination of the UG-2E; and (6) sulfide mineral and secondary silicate mineral textures in both the UG-2E and UG-2 are indicative of minor, millimeter- to centimeter-scale, hydrothermal alteration. From our observations and results, we consider the UG-2E chromitite in the northern limb to be the equivalent to the UG-2 in the eastern and western limbs that has been contaminated by assimilation of Transvaal Supergroup footwall rocks during emplacement. The contamination resulted in UG-2E sulfide mineral elemental contents and platinum-group mineral types and abundances that are distinct from those of the UG-2 in the rest of the Bushveld.

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1216
Xiaohao Sun ◽  
Bozeng Wu ◽  
Mingzhen Hu ◽  
Hongxin Qiu ◽  
Jiushuai Deng ◽  

Arsenopyrite is a common arsenic-containing mineral that is often closely associated with sulfide minerals, such as pyrite, chalcopyrite, pyrrhotite, galena, and sphalerite, and with precious metals, such as gold and silver. The selective inhibition of arsenopyrite is an important method used to reduce the arsenic content of processed products, the cost of arsenic removal in metallurgical processes, and its impact on the environment. In this study, we discovered a chemical sodium, m-nitrobenzoate (m-NBO), that can effectively inhibit the flotation behaviors of arsenopyrite via sodium butyl xanthate (NaBX), and these effects were studied by flotation experiments. The results showed that, using NaBX as a collector, arsenopyrite had good floatability under acidic conditions, but the floatability decreased under alkaline conditions. Furthermore, the organic inhibitor m-NBO had a significant inhibitory effect on arsenopyrite under alkaline conditions. In addition, the adsorption between m-NBO and NaBX was competitive, and a hydrophilic layer formed on the surface of arsenopyrite. The passivation film prevents dixanthogen from being adsorbed on the surface of the mineral. Due to the effect of m-NBO on arsenopyrite, the redox potential and oxide content of the arsenopyrite surface increased, the hydrophobicity of the arsenopyrite surface was reduced, and the flotation of arsenopyrite was inhibited. These results provide options for separating multimetal sulfide minerals and arsenic-containing minerals.

Sign in / Sign up

Export Citation Format

Share Document