A flame-controlling continuation method for generating S-curve responses with detailed chemistry

1996 ◽  
Vol 104 (3) ◽  
pp. 328-342 ◽  
Author(s):  
M. Nishioka ◽  
C.K. Law ◽  
T. Takeno
Author(s):  
Elena Makarycheva

The aim of the article is to develop a method for calculating water losses from irrigation channels in determining the permeability of rock in the zone of filtration flow on the basis of the law of infiltration A.N. Kostyakov using the results of studies of free filtration from pits and foundation pits in loess loams. Pressure movement of water in irrigation canals is subject to the laws of two-phase flow, in which – in contrast to the Darcy law for the zone of saturation plays an important role, the volume and its change in time. The filtration rate (VF) increases with increasing rock moisture (θ) along the S-curve, while the pressure gradient (I = dh/dz) decreases. The dependences of these parameters on the pressure are represented by power functions, and their product CDP = VFI does not change in time and can serve as a characteristic of the filtration flow under the channel. When installing paired piezometers near the water chore line in the channel and determining the graph I(t) by the value of the twophase flow constant CDP, it is possible to calculate the filtration rate at a number of times and the water losses during unsteady filtration. Water losses from the channels at equilibrium humidity increases with increasing head according to the formula A.N. Kostyakova, in which the water permeability of rocks is characterized by a steady filtration rate at a head of 1.0 m, and the gradient is the function of pressure. The application of the proposed method of calculating losses in the design of irrigation systems will increase the reliability of the justification of the volume of anti-filtration measures and the forecast of the groundwater level.


2018 ◽  
Vol 26 (2) ◽  
Author(s):  
Dean A. Forbes

In a recent essay published in this journal, I illustrated the limitations one may encounter when sequencing texts temporally using s-curve analysis. I also introduced seriation, a more reliable method for temporal ordering much used in both archaeology and computational biology. Lacking independently ordered Biblical Hebrew (BH) data to assess the potential power of seriation in the context of diachronic studies, I used classic Middle English data originally compiled by Ellegård. In this addendum, I reintroduce and extend s-curve analysis, applying it to one rather noisy feature of Middle English. My results support Holmstedt’s assertion that s-curve analysis can be a useful diagnostic tool in diachronic studies. Upon quantitative comparison, however, the five-feature seriation results derived in my former paper are found to be seven times more accurate than the single-feature s-curve results presented here. 


2020 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Christian Ebere Enyoh ◽  
Andrew Wirnkor Verla ◽  
Chidi Edbert Duru ◽  
Emmanuel Chinedu Enyoh ◽  
Budi Setiawan

Based on the official Nigeria Centre for Disease Control (NCDC) data, the current research paper modeled the confirmed cases of the novel coronavirus disease 2019 (COVID-19) in Nigeria. Ten different curve regression models including linear, logarithmic, inverse, quadratic, cubic, compound, power, S-curve, growth, and exponential were used to fit the obtained official data. The cubic (R2 = 0.999) model gave the best fit for the entire country. However, the growth and exponential had the lowest standard error of estimate (0.958) and thus may best be used. The equations for these models were e0.78897+0.0944x and 2.2011e0.0944x respectively. In terms of confirmed cases in individual State, quadratic, cubic, compound, growth, power and exponential models generally best describe the official data for many states except for the state of Kogi which is best fitted with S-curve and inverse models.  The error between the model and the official data curve is quite small especially for compound, power, growth and exponential models. The computed models will help to realized forward prediction and backward inference of the epidemic situation in Nigeria, and the relevant analysis help Federal and State governments to make vital decisions on how to manage the lockdown in the country.


2019 ◽  
Vol 26 (7-8) ◽  
pp. 459-474
Author(s):  
Saeed Mahmoudkhani ◽  
Hodjat Soleymani Meymand

The performance of the cantilever beam autoparametric vibration absorber with a lumped mass attached at an arbitrary point on the beam span is investigated. The absorber would have a distinct feature that in addition to the two-to-one internal resonance, the one-to-three and one-to-five internal resonances would also occur between flexural modes of the beam by tuning the mass and position of the lumped mass. Special attention is paid on studying the effect of these resonances on increasing the effectiveness and extending the range of excitation amplitudes at which the autoparametric vibration absorber remains effective. The problem is formulated based on the third-order nonlinear Euler–Bernoulli beam theory, where the assumed-mode method is used for deriving the discretized equations of motion. The numerical continuation method is then applied to obtain the frequency response curves and detect the bifurcation points. The harmonic balance method is also employed for detecting the type of internal resonances between flexural modes by inspecting the frequency response curves corresponding to different harmonics of the response. Parametric studies on the performance of the absorber are conducted by varying the position and mass of the lumped mass, while the frequency ratio of the primary system to the first mode of the beam is kept equal to two. Results indicated that the one-to-five internal resonance is especially responsible for the considerable enhancement of the performance.


Meccanica ◽  
2021 ◽  
Author(s):  
Gábor Csernák ◽  
Gábor Licskó

AbstractThe responses of a simple harmonically excited dry friction oscillator are analysed in the case when the coefficients of static and kinetic coefficients of friction are different. One- and two-parameter bifurcation curves are determined at suitable parameters by continuation method and the largest Lyapunov exponents of the obtained solutions are estimated. It is shown that chaotic solutions can occur in broad parameter domains—even at realistic friction parameters—that are tightly enclosed by well-defined two-parameter bifurcation curves. The performed analysis also reveals that chaotic trajectories are bifurcating from special asymmetric solutions. To check the robustness of the qualitative results, characteristic bifurcation branches of two slightly modified oscillators are also determined: one with a higher harmonic in the excitation, and another one where Coulomb friction is exchanged by a corresponding LuGre friction model. The qualitative agreement of the diagrams supports the validity of the results.


Sign in / Sign up

Export Citation Format

Share Document