filtration flow
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 53)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Boris S. Maryshev ◽  
Lyudmila S. Klimenko
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8454
Author(s):  
Kexing Li ◽  
Bowen Chen ◽  
Wanfen Pu ◽  
Xueqi Jing ◽  
Chengdong Yuan ◽  
...  

Wettability alteration is one of the most important mechanisms of surfactant flooding. In this work, the combined Amott/USBM (United States Bureau of Mines) method was applied to study the average wettability alteration of initially neutral cores after viscoelastic-surfactant (VES) filtration. The effects of static aging, dynamic aging, VES concentration, filtration flow rate, and pore radius on the alteration of a core’s average wettability were studied. The wettability-alteration trends measured by Amott and USBM were consistent, demonstrating that the overall hydrophilicity of the core was enhanced after VES filtration. The wettability alterations of the core brought about by dynamic aging were more significant than by static aging. The viscoelastic properties of the VES played an important role in altering the wettability. In addition, the ability of the VES to affect the core’s wettability was significantly enhanced when the VES concentration was increased, which was beneficial in increasing VES adsorption on the pore-wall surface, thus altering the overall wettability of the core. Increasing filtration flow rates can destroy those high-viscosity VES aggregates via the higher shear rate. A higher retention of VES makes the core more hydrophilic. The difference in the wettability of cores with different pore radius after VES filtration was not significant. The alteration of average wettability caused by VES in porous media provides a new vision for studying the EOR mechanism of VES.


Georesursy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 58-64
Author(s):  
Anatoly Nikiforov ◽  
Roman Sadovnikov

The paper discusses the influence of wave action on the process of detachment and removal of particles from a porous body by a two-phase filtration flow. When modeling this process, the problem of the influence of the wave field on the force under the action of which the particles are detached from the pore walls is solved. For the first time, a pore-size distribution function is used for its solution. An expression for the critical flow velocity under wave action has been obtained. Critical frequency value of wave action depends on the capillary radius and the smaller the capillary radius is, the higher frequency is needed to enhance the effect of the action. At higher frequency of oscillation the peak of maximum change in the thickness of the sedimentary layer is shifted towards the pores of small radius. To maintain the influence of the wave field on the filtration parameters of the porous medium, the wave action should be carried out at a dynamically changing frequency range to increase the coverage of the effect of as many pores as possible. It is shown that particle removal during wave action increases due to the action of inertial forces, which reduce the influence of forces holding the particles on the pore surface.


Author(s):  
Yurii Klymiuk ◽  
Andrii Bomba

In the paper a mathematical models of technological modes of filtration with automated removal of part of heat from interface surfaces (water purification from multicomponent impurities), backwashing, chemical regeneration and direct washing of rapid cone-shaped adsorption filters with chemical regeneration of piecewise homogeneous porous loads while maintaining constant velocities of the respective modes is formulated. The proposed models in the complex allow to conduct computer experiments to investigate the change in the concentrations of components of a multicomponent impurity in the filtration stream and on the surface of the loading adsorbent, retained by both physical and chemical adsorption, filtration flow temperature, filtration coefficient, active porosity and pressure along the filter height and on their basis to predict more optimal options for the use of adsorbents of each loading layer and increase the protective time of rapid cone-shaped adsorption filters with automated heat removal from the interface surfaces in filter mode.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 529
Author(s):  
Makoto Fukuda ◽  
Tomoya Furuya ◽  
Kazunori Sadano ◽  
Asako Tokumine ◽  
Tomohiro Mori ◽  
...  

The objective of this study is to clarify the pore structure of ECMO membranes by using our approach and theoretically validate the risk of SARS-CoV-2 permeation. There has not been any direct evidence for SARS-CoV-2 leakage through the membrane in ECMO support for critically ill COVID-19 patients. The precise pore structure of recent membranes was elucidated by direct microscopic observation for the first time. The three types of membranes, polypropylene, polypropylene coated with thin silicone layer, and polymethylpentene (PMP), have unique pore structures, and the pore structures on the inner and outer surfaces of the membranes are completely different anisotropic structures. From these data, the partition coefficients and intramembrane diffusion coefficients of SARS-CoV-2 were quantified using the membrane transport model. Therefore, SARS-CoV-2 may permeate the membrane wall with the plasma filtration flow or wet lung. The risk of SARS-CoV-2 permeation is completely different due to each anisotropic pore structure. We theoretically demonstrate that SARS-CoV-2 is highly likely to permeate the membrane transporting from the patient’s blood to the gas side, and may diffuse from the gas side outlet port of ECMO leading to the extra-circulatory spread of the SARS-CoV-2 (ECMO infection). Development of a new generation of nanoscale membrane confirmation is proposed for next-generation extracorporeal membrane oxygenator and system with long-term durability is envisaged.


Author(s):  
V.S. Gevod ◽  
◽  
A.S. Chernova

This work was aimed creating a simple and reliable submersed biofilter for the decentralized treatment of nitrate-contaminated water. Denitrification of water was studied by the method of displacement (piston) bio-filtration in specially designed devices intended for home application. At certain sizes of grains of bio-filtration bed and filtration flow directions in it, the change in operating mode of denitrifying biofilter from direct flow to displacement mode offers the following advantages. There is no need to maintain a continuous and slow flow of water through the biofilter. The consumers have the opportunity to feed big portions of water into the bio-filter in one gulp (pulse) and nevertheless get the same quantity of denitrified water. The design of created biofilters is simple. Assembling these bio-filters implies the use of materials with a minimum carbon footprint.


Author(s):  
R.U. Rabaev ◽  
◽  
A.V. Chibisov ◽  
A.Yu. Kotenev ◽  
M.Yu. Kotenev ◽  
...  

The article presents the theoretical studies results of hydrochloric acid compositions filtration in carbonate collectors porous media saturated with two-phase formation liquid. Solution of filtration problem in the process of carbonate rock leaching with possible regulation of process by hydrocarbon solvents is considered. Numerical algorithm of acid effect on oil-saturated formation is proposed and tested, which allows to determine the following parameters of filtration flow: concentration of hydrochloric acid, distribution of water saturation, pressure and other parameters. A mathematical model of the carbonate collector dissolution process using composite solvents has been developed, which allows predicting technological indicators of acid impact efficiency.


Sign in / Sign up

Export Citation Format

Share Document