Application of finite element method to the study of strength of car body structure and wheel

1976 ◽  
Vol 8 (2) ◽  
pp. 132
2018 ◽  
Vol 178 ◽  
pp. 05014 ◽  
Author(s):  
Andrzej Baier ◽  
Łukasz Grabowski ◽  
Łukasz Stebel ◽  
Mateusz Komander ◽  
Przemysław Konopka ◽  
...  

Numerical analysis of drag values of an electric race car's body. Silesian Greenpower is a student organization specializing in electric race car design. One of the most important issues during the design is reducing the vehicle drag to minimum and is done, mainly, by designing a streamline car body. The aim of this work was to design two electric cars bodies with different shape in Siemens NX CAD software, next a finite elements mesh was created and implemented into the ANSYS Workbench 16.1 software. Afterwards an aerodynamic analysis was carried out, using the finite element method (FEM). Simulations and calculations have been performed in ANSYS Fluent: CFD Simulation software. Computer simulation allowed to visualize the distribution of air pressure on and around car, the air velocity distribution around the car and aerodynamics streamline trajectory. The results of analysis were used to determine the drag values of electric car and determine points of the highest drag. In conclusion car body representing lower drag was appointed. The work includes theoretical introduction, containing information about finite element method, ANSYS and Siemens NX software and also basic aerodynamics laws.


Author(s):  
Dmitriy Antipin ◽  
Mihail Bulychev ◽  
Gennadiy Petrov

A simplified method has been developed for assessing the loading of the load-bearing systems of passenger cars under thermal loading with a fire spot with limited properties. A system of simplifications for realizing a combustion spot is substantiated. A method for its implementation is proposed. The description of the object of research is given with the necessary thoroughness of presentation. A finite element scheme has been developed and adapted, taking into account the application of thermal loads in the system of an industrial software complex that implements the finite element method. Verification of the finite element scheme was carried out taking into account full-scale normative experiments. A conclusion is made about the possibility of the applicability of the finite element scheme for the study. Numerical experiments have been carried out to assess the carrying capacity of the body of a double-deck passenger car when it is exposed to a combustion center with known thermal parameters. The experiments were built and performed in a finite element method system. The results of simulations in the affected zone of the alleged fire were obtained for the conditional spot of its location. Comparison of the results with the static loading mode of the car body is considered. The analysis of the results obtained is carried out. A conclusion is given on the effect of a small localization fire on the carrying capacity of the car body. The proposed method is evaluated taking into account the possibility of further use


2001 ◽  
Vol 2001.10 (0) ◽  
pp. 291-294
Author(s):  
Kimihiko NAKANO ◽  
Takashi SAITO ◽  
Sumio OKUNO ◽  
Michifumi TAKEICHI

2015 ◽  
Vol 787 ◽  
pp. 270-274 ◽  
Author(s):  
S. Deepak ◽  
A. Vasanthanathan ◽  
P. Nagaraj

This article emphasizes on finite element modeling and simulation of train car body structure in order to ensure a crashworthy structure. Crashworthiness is a principal parameter to be considered to be taken into account in case of design of train car body structure. The present paper deals with the development of virtual prototype with energy absorption capabilities. The train car body structure with trapezoidal core has been modeled using SOLIDWORKS® software. The entire crash simulation in the present study was done by using LS-Dyna® Explicit finite element software. The crash analysis of train car body over a rigid concrete wall was numerically simulated at three different speeds viz. 60 km/hr, 90 km/hr, 120 km/hr. In every crash analysis, the stress plot and history of deformation from the developed virtual prototype. The simulation of the rail vehicle collision presented in this article is based upon the standard specified in crashworthy section of Technical Standards of interoperability. The dynamic numerical simulation of two train car bodies with equal velocities has also performed using LS-Dyna®.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document