scholarly journals Numeric analysis of airflow around the body of the Silesian Greenpower vehicle

2018 ◽  
Vol 178 ◽  
pp. 05014 ◽  
Author(s):  
Andrzej Baier ◽  
Łukasz Grabowski ◽  
Łukasz Stebel ◽  
Mateusz Komander ◽  
Przemysław Konopka ◽  
...  

Numerical analysis of drag values of an electric race car's body. Silesian Greenpower is a student organization specializing in electric race car design. One of the most important issues during the design is reducing the vehicle drag to minimum and is done, mainly, by designing a streamline car body. The aim of this work was to design two electric cars bodies with different shape in Siemens NX CAD software, next a finite elements mesh was created and implemented into the ANSYS Workbench 16.1 software. Afterwards an aerodynamic analysis was carried out, using the finite element method (FEM). Simulations and calculations have been performed in ANSYS Fluent: CFD Simulation software. Computer simulation allowed to visualize the distribution of air pressure on and around car, the air velocity distribution around the car and aerodynamics streamline trajectory. The results of analysis were used to determine the drag values of electric car and determine points of the highest drag. In conclusion car body representing lower drag was appointed. The work includes theoretical introduction, containing information about finite element method, ANSYS and Siemens NX software and also basic aerodynamics laws.

Author(s):  
Dmitriy Antipin ◽  
Mihail Bulychev ◽  
Gennadiy Petrov

A simplified method has been developed for assessing the loading of the load-bearing systems of passenger cars under thermal loading with a fire spot with limited properties. A system of simplifications for realizing a combustion spot is substantiated. A method for its implementation is proposed. The description of the object of research is given with the necessary thoroughness of presentation. A finite element scheme has been developed and adapted, taking into account the application of thermal loads in the system of an industrial software complex that implements the finite element method. Verification of the finite element scheme was carried out taking into account full-scale normative experiments. A conclusion is made about the possibility of the applicability of the finite element scheme for the study. Numerical experiments have been carried out to assess the carrying capacity of the body of a double-deck passenger car when it is exposed to a combustion center with known thermal parameters. The experiments were built and performed in a finite element method system. The results of simulations in the affected zone of the alleged fire were obtained for the conditional spot of its location. Comparison of the results with the static loading mode of the car body is considered. The analysis of the results obtained is carried out. A conclusion is given on the effect of a small localization fire on the carrying capacity of the car body. The proposed method is evaluated taking into account the possibility of further use


2015 ◽  
Vol 809-810 ◽  
pp. 443-448 ◽  
Author(s):  
Tomasz Kik ◽  
Marek Slovacek ◽  
Jaromir Moravec ◽  
Mojmir Vanek

Simulation software based on a finite element method have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. But the numerical simulation of welding processes is one of the more complicated issues in analyses carried out using the Finite Element Method. A welding process thermal cycle directly affects the thermal and mechanical behaviour of a structure during the process. High temperature and subsequent cooling of welded elements generate undesirable strains and stresses in the structure. Knowledge about the material behaviour subjected to the welding thermal cycle is most important to understand process phenomena and proper steering of the process. The study presented involved the SYSWELD software-based analysis of MIG welded butt joints made of 1.0 mm thickness, 5xxx series aluminium alloy sheets. The analysis of strains and the distribution of stresses were carried out for several different cases of fixing and releasing of welded elements.


2016 ◽  
Vol 64 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Onic Islam Shuvo ◽  
Md Naimul Islam

One of the major problems with Electrical Impedance Tomography (EIT) is the lack of spatial sensitivity within the measured volume. In this paper, sensitivity distribution of the tetrapolar impedance measurement system was visualized considering a cylindrical phantom consisting of homogeneous and inhomogeneous medium. Previously, sensitivity distribution was analysed analytically only for the homogeneous medium considering simple geometries and the distribution was found to be complex1,2. However, for the inhomogeneous volume conductors sensitivity analysis needs to be done using finite element method (FEM). In this paper, the results of sensitivity analysis based on finite element method using COMSOL Multiphysics simulation software are presented. A cylindrical non-uniform, inhomogeneous phantom, which mimics the human upper arm, was chosen to do the experiments by varying different parameters of interest. A successful method for controlling the region of interest was found where the sensitivity was maximum. Refining the finite element mesh size and introducing multifrequency input current (up to 1 MHz) this simulation method can be further improved.Dhaka Univ. J. Sci. 64(1): 7-13, 2016 (January)


2008 ◽  
Vol 575-578 ◽  
pp. 1139-1144 ◽  
Author(s):  
Chan Chin Wang

A simulator based on rigid-plastic finite element method is developed for simulating the plastic flow of material in forging processes. In the forging process likes backward extrusion, a workpiece normally undergoes large deformation around the tool corners that causes severe distortion of elements in finite element analysis. Since the distorted elements may induce instability of numerical calculation and divergence of nonlinear solution in finite element analysis, a computational technique of using the Euler’s fixed meshing method is proposed to deal with large deformation problem by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. With this method, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. The proposed method is found to be effective in simulating complicated material flow inside die cavity which has many sharp edges, and also the extrusion of relatively slender parts like fins. In this paper, the formulation of rigid-plastic finite element method based on plasticity theory for slightly compressible material is introduced, and the advantages of the proposed method as compared to conventional one are discussed.


2003 ◽  
Vol 30 (2) ◽  
pp. 381-390
Author(s):  
L H You ◽  
J J Zhang ◽  
H B Wu ◽  
R B Sun

In this paper, a numerical method is developed to calculate deformations and stresses of the body of dry gas holders under gas pressure. The deformations of the wall plates are decomposed into out-of-plane bending and in-plane deformation. The out-of-plane bending of the wall plates is described by the theory of orthotropic plates and the in-plane deformation by the biharmonic equation of flat plates under plane stress. The theories of beam columns and beams are employed to analyze the columns and corridors, respectively. By considering compatibility conditions between the members and boundary conditions, equations for the determination of deformations and stresses of dry gas holders under gas pressure are obtained. Both the proposed approach and the finite element method are used to investigate the deformations and stresses of the body of a dry gas holder under gas pressure. The results from the proposed method agree with those from the finite element method. Because far fewer unknowns are involved, the proposed method is computationally more efficient than both the finite element method and the series method developed from the theory of stiffened plates.Key words: numerical approach, body of dry gas holders, gas pressure.


Author(s):  
Mark M. Rashid ◽  
Mili Selimotic ◽  
Tarig Dinar

An analysis system for solid mechanics applications is described in which a new finite element method that can accommodate general polyhedral elements is exploited. The essence of the method is direct polynomial approximation of the shape functions on the physical element, without transformation to a canonical element. The main motive is elimination of the requirement that all elements be similar to a canonical element via the usual isoparametric mapping. It is this topological restriction that largely drives the design of mesh-generation algorithms, and ultimately leads to the considerable human effort required to perform complex analyses. An integrated analysis system is described in which the flexibility of the polyhedral element method is leveraged via a robust computational geometry processor. The role of the latter is to perform rapid Boolean intersection operations between hex meshes and surface representations of the body to be analyzed. A typical procedure is to create a space-filling structured hex mesh that contains the body, and then extract a polyhedral mesh of the body by intersecting the hex mesh and the body’s surface. The result is a mesh that is directly usable in the polyhedral finite element method. Some example applications are: 1) simulation on very complex geometries; 2) rapid geometry modification and re-analysis; and 3) analysis of material-removal process steps following deformation processing. This last class of problems is particularly challenging for the conventional FE methodology, because the element boundaries are, in general, not aligned with the cutting geometry following the deformation (e.g. forging) step.


Author(s):  
P Hernandez ◽  
R Boudet

The objective of this paper is to present a model of the behaviour of dynamical seals and the corresponding numerical results. These seals are used in the mechanism to realize partial sealing when the relative rotating speeds are too high for usual solutions. The studied seals mainly include two discs: one is attached to the shaft and the other to the body, the last one being pushed and the first being attached by springs. During operation, a gaseous film is created between the discs, preventing any contact. The control of the film thickness allows the leakage flow to be controlled. For the behaviour of such mechanisms, an analytical formulation of the problem is firstly presented. Then a geometrical and kinematical model having one degree of freedom is proposed to model the mechanism having two discs in relative rotation, one of which is spirally grooved. A dynamical model associated with the motion of the disc attached to the body has been developed and the mechanics of thin viscous films is used to study the behaviour of the gaseous film at the interface. Utilization of the finite element method in the mechanics of thin viscous films is introduced and a description of the elements used is presented. The influence of the groove's angle and the groove's depth is shown through numerical results concerning leakage mass flow through the mechanism and the loading capacity of the fluid film, as well as the coefficients of stiffness and damping associated with the dynamical model.


Sign in / Sign up

Export Citation Format

Share Document