Creep crack propagation in austenitic stainless steel at elevated temperatures

1977 ◽  
Vol 9 (4) ◽  
pp. 879-889 ◽  
Author(s):  
Kawasaki Tadashi ◽  
Horiguchi Masakazu
2011 ◽  
Vol 230-232 ◽  
pp. 596-599
Author(s):  
Li Jie Chen ◽  
Zun Qun Gong ◽  
Qi Zhao

First, tensile creep curve and creep propagation tests are conducted for austenitic stainless steel 0Cr18Ni9, i.e. 304 stainless steel at 550°C. The corresponding time hardening creep law is given for stresses ranging from 240 to 320 Mpa and the creep crack propagation length under a tension load of 10kN is measured by using QUESTAR long focus microscope system. Second, with the commercial finite element (FE) code ANSYS, the critical crack tip opening displacement (CTOD) is considered as crack propagation criterion to simulate the creep crack growth in the standard compact tension (CT) specimen. The FE predictions of the creep crack length in the primary and secondary stages are found to agree reasonably with the experimental results. The maximum computational error between the predictions and the experiment results is within 10%. Hence, the critical CTOD is a feasible criterion for crack growth simulations at elevated temperatures.


2010 ◽  
Vol 4 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Kiyotaka MASAKI ◽  
Yasuo OCHI ◽  
Takashi MATSUMURA ◽  
Takaaki IKARASHI ◽  
Yuji SANO

2011 ◽  
Vol 488-489 ◽  
pp. 97-100 ◽  
Author(s):  
Clemens Vichytil ◽  
G. Mori ◽  
Reinhard Pippan ◽  
M. Panzenböck ◽  
Rainer Fluch

Purpose: Applications for highly corrosive environments and cyclic loading are often made out of austenitic stainless steels. Corrosion fatigue and crack propagation behaviour has been studied to determine failure processes and damage mechanisms. Approach: CrNiMo stabilized austenitic stainless steel and CrMnN austenitic stainless steel in solution annealed and cold worked condition are compared. S/N curves and crack propagation rate curves are recorded in 43 wt% CaCl2solution at 120 °C, which resembles most severe potential service conditions. For comparison these experiments are also performed in inert glycerine. Additionally, the electrochemical behaviour of these materials has been studied. Findings: The CrMnN steels have excellent mechanical properties but are very susceptible to stress corrosion cracking in the test solution. The fatigue limit as well as the threshold for long crack growth are significantly reduced in corrosive environment. Moreover these steels exhibit a remarkable increase in the propagation rate, which is extremely pronounced in the near threshold region. This effect is enhanced by cold working. CrNiMo steels also show a reduction in the fatigue limit, but it is less pronounced compared to CrMnN steels. The threshold is significantly reduced in corrosive environment, but propagation rate is lower in corrosive environment compared to inert glycerine. Possible explanations of this surprising behaviour are discussed.


Sign in / Sign up

Export Citation Format

Share Document