Finite element analysis of a circumferentially cracked cylindrical shell loaded in torsion

1989 ◽  
Vol 32 (1) ◽  
pp. 123-136 ◽  
Author(s):  
M. Kumosa ◽  
D. Hull
2005 ◽  
Vol 128 (3) ◽  
pp. 414-419
Author(s):  
James Gombas

A circular flat plate with a perforated central region is to be formed by dies into a dome and then welded onto a cylindrical shell. After welding, the dome must be spherical within a narrow tolerance band. This plate forming and welding is simulated using large deflection theory elastic-plastic finite element analysis. The manufacturing assessment is performed so that the dies may be designed to compensate for plate distortions that occur during various stages of manufacturing, including the effects of weld distortion. The manufacturing simulation benchmarks against measurements taken at several manufacturing stages from existing hardware. The manufacturing simulation process can then be used for future applications of similar geometries.


2021 ◽  
Vol 27 (5) ◽  
pp. 60-70
Author(s):  
N.H. Sakhno ◽  
◽  
K.V. Avramov ◽  
B.V. Uspensky ◽  
◽  
...  

Free oscillations and dynamic instability due to supersonic airflow pressure are investigated in a functional-gradient compound composite conical-cylindrical shell made of a carbon nanotubes-reinforced material. Nanocomposite materials with a linear distribution of the volumetric fraction of nanotubes over the thickness are considered. Extended mixture rule is used to estimate nanocomposite’s mechanical characteristics. A high-order shear deformation theory is used to represent the shell deformation. The assumed-mode technique, along with a Rayleigh-Ritz method, is applied to obtain the equations of the structure motion. To analyze the compound structure dynamics, a new system of piecewise basic functions is suggested. The pressure of a supersonic flow on the shell is obtained by using the piston theory. An example of the dynamic analysis of a nanocomposite conical-cylindrical shell in the supersonic gas flow is considered. The results of its modal analysis using the Rayleigh-Ritz technique are close to the natural frequencies of the shell obtained by finite element analysis. In this case, finite element analysis can only be used for shells made of material with a uniform distribution of nanotubes over the thickness. The dependence of the natural frequencies of a compound shell on the ratio of the lengths of the conical and cylindrical parts is studied. The dependence of the critical pressure of a supersonic flow on the Mach numbers and the type of carbon nanotubes reinforcement is investigated. Shells with a concentration of nanotubes predominantly near the outer and inner surfaces are characterized by higher values of natural frequencies and critical pressure than the shells with a uniform distribution of nanotubes or with a predominant concentration of nanotubes inside the shell.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
C. F. Qian ◽  
H. J. Yu ◽  
L. Yao

In order to investigate the possibility of numerical simulation for whole structures of heat exchangers, two finite element analysis models have been established for the fixed tubesheet structure composed of tubesheet, cylindrical shell, and tubes using different types of elements. Stresses and deformations produced by pressure load or thermal load are calculated, and the axial strain at the middle area of the cylindrical shell is experimentally measured. By comparing the numerical results with experimental measurements, it is found that both finite element analysis models can give satisfactory results. Considering the difficulties in modeling heat exchangers, beam and shell elements are recommended.


Sign in / Sign up

Export Citation Format

Share Document