Wear mechanism and Finite Element Analysis of Cemented Carbide Tool Rake Face When Cutting Cylindrical Shell Material*

Author(s):  
Xiaofeng Du ◽  
Wei Zhang
2004 ◽  
Vol 28 (8) ◽  
pp. 1140-1151 ◽  
Author(s):  
ChungMin Hyun ◽  
YoungSam Kwon ◽  
SukHwan Chung ◽  
MyoungJin Kim ◽  
SangYul Ha ◽  
...  

Author(s):  
Siyuan Gao ◽  
Minli Zheng ◽  
Jinguo Chen ◽  
Wei Zhang

Hardness is a critical mechanical property of cutting tools, which significantly affects the cutting performance and wear resistance. Therefore, it is of great significance to obtain the hardness of the tool surface accurately. This paper presents a method based on finite element method (FEM) for studying the hardness of carbide tools. The microstructure of the carbide tool is obtained by scanning electron microscope(SEM). Combined with stereo principle, and secondary treatment, a three-dimensional multi-crystal model of carbide tool and indentation is established, and the model and hardness value obtained by different calculation methods are verified by microhardness test. The results show that the real hardness of the cemented carbide tool can be obtained by the indentation FEM model. The hardness values of cemented carbide tools are then calculated by the traditional method, Oliver-Pharr (OP) method and indentation method, respectively. It is found that the hardness value of the traditional method is the largest and fluctuates greatly, while the hardness values calculated by the OP method and indentation method are similar, and the fluctuation range of the hardness value calculated by the OP method is larger. In conclusion, the hardness calculated by the indentation work method is the best.


2005 ◽  
Vol 128 (3) ◽  
pp. 414-419
Author(s):  
James Gombas

A circular flat plate with a perforated central region is to be formed by dies into a dome and then welded onto a cylindrical shell. After welding, the dome must be spherical within a narrow tolerance band. This plate forming and welding is simulated using large deflection theory elastic-plastic finite element analysis. The manufacturing assessment is performed so that the dies may be designed to compensate for plate distortions that occur during various stages of manufacturing, including the effects of weld distortion. The manufacturing simulation benchmarks against measurements taken at several manufacturing stages from existing hardware. The manufacturing simulation process can then be used for future applications of similar geometries.


2021 ◽  
Vol 27 (5) ◽  
pp. 60-70
Author(s):  
N.H. Sakhno ◽  
◽  
K.V. Avramov ◽  
B.V. Uspensky ◽  
◽  
...  

Free oscillations and dynamic instability due to supersonic airflow pressure are investigated in a functional-gradient compound composite conical-cylindrical shell made of a carbon nanotubes-reinforced material. Nanocomposite materials with a linear distribution of the volumetric fraction of nanotubes over the thickness are considered. Extended mixture rule is used to estimate nanocomposite’s mechanical characteristics. A high-order shear deformation theory is used to represent the shell deformation. The assumed-mode technique, along with a Rayleigh-Ritz method, is applied to obtain the equations of the structure motion. To analyze the compound structure dynamics, a new system of piecewise basic functions is suggested. The pressure of a supersonic flow on the shell is obtained by using the piston theory. An example of the dynamic analysis of a nanocomposite conical-cylindrical shell in the supersonic gas flow is considered. The results of its modal analysis using the Rayleigh-Ritz technique are close to the natural frequencies of the shell obtained by finite element analysis. In this case, finite element analysis can only be used for shells made of material with a uniform distribution of nanotubes over the thickness. The dependence of the natural frequencies of a compound shell on the ratio of the lengths of the conical and cylindrical parts is studied. The dependence of the critical pressure of a supersonic flow on the Mach numbers and the type of carbon nanotubes reinforcement is investigated. Shells with a concentration of nanotubes predominantly near the outer and inner surfaces are characterized by higher values of natural frequencies and critical pressure than the shells with a uniform distribution of nanotubes or with a predominant concentration of nanotubes inside the shell.


Sign in / Sign up

Export Citation Format

Share Document