scholarly journals Dynamic instability of a compound nanocomposite shell

2021 ◽  
Vol 27 (5) ◽  
pp. 60-70
Author(s):  
N.H. Sakhno ◽  
◽  
K.V. Avramov ◽  
B.V. Uspensky ◽  
◽  
...  

Free oscillations and dynamic instability due to supersonic airflow pressure are investigated in a functional-gradient compound composite conical-cylindrical shell made of a carbon nanotubes-reinforced material. Nanocomposite materials with a linear distribution of the volumetric fraction of nanotubes over the thickness are considered. Extended mixture rule is used to estimate nanocomposite’s mechanical characteristics. A high-order shear deformation theory is used to represent the shell deformation. The assumed-mode technique, along with a Rayleigh-Ritz method, is applied to obtain the equations of the structure motion. To analyze the compound structure dynamics, a new system of piecewise basic functions is suggested. The pressure of a supersonic flow on the shell is obtained by using the piston theory. An example of the dynamic analysis of a nanocomposite conical-cylindrical shell in the supersonic gas flow is considered. The results of its modal analysis using the Rayleigh-Ritz technique are close to the natural frequencies of the shell obtained by finite element analysis. In this case, finite element analysis can only be used for shells made of material with a uniform distribution of nanotubes over the thickness. The dependence of the natural frequencies of a compound shell on the ratio of the lengths of the conical and cylindrical parts is studied. The dependence of the critical pressure of a supersonic flow on the Mach numbers and the type of carbon nanotubes reinforcement is investigated. Shells with a concentration of nanotubes predominantly near the outer and inner surfaces are characterized by higher values of natural frequencies and critical pressure than the shells with a uniform distribution of nanotubes or with a predominant concentration of nanotubes inside the shell.

Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


2011 ◽  
Vol 314-316 ◽  
pp. 1792-1795
Author(s):  
Hu Huang ◽  
Hong Wei Zhao ◽  
Jie Yang ◽  
Shun Guang Wan ◽  
Jie Mi ◽  
...  

In this paper, a miniaturization nanoindentation and scratch device was developed. Finite element analysis was carried out to study static and modal characteristics of x/y flexure hinge and z axis driving hinge as well as effect of geometric parameters on output performances of z axis driving hinge. Results indicated that x/y flexure hinge and z axis driving hinge had enough strength and high natural frequencies. Geometric parameters of z axis driving hinge affected output performances significantly. The model of developed device was established. Indentation experiments of Si and amorphous alloy showed that the developed miniaturization nanoindentation and scratch device worked well and can carry out indentation experiments with certain accuracy.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


2005 ◽  
Vol 128 (3) ◽  
pp. 414-419
Author(s):  
James Gombas

A circular flat plate with a perforated central region is to be formed by dies into a dome and then welded onto a cylindrical shell. After welding, the dome must be spherical within a narrow tolerance band. This plate forming and welding is simulated using large deflection theory elastic-plastic finite element analysis. The manufacturing assessment is performed so that the dies may be designed to compensate for plate distortions that occur during various stages of manufacturing, including the effects of weld distortion. The manufacturing simulation benchmarks against measurements taken at several manufacturing stages from existing hardware. The manufacturing simulation process can then be used for future applications of similar geometries.


1999 ◽  
Vol 121 (4) ◽  
pp. 984-988 ◽  
Author(s):  
Alex Y. Tsay ◽  
Jin-Hui Ouyang ◽  
C.-P. Roger Ku ◽  
I. Y. Shen ◽  
David Kuo

This paper studies natural frequencies and mode shapes of a glide head with a piezoelectric transducer (PZT) through calibrated experiments and a finite element analysis. In the experiments, the PZT transducer served as an actuator exciting the glide head from 100 kHz to 1.3 MHz, and a laser Doppler vibrometer (LDV) measured displacement of the glide head at the inner or outer rail. The natural frequencies were measured through PZT impedance and frequency response functions from PZT to LDV. In the finite element analysis, the glide head was meshed by brick elements. The finite element results show that there are two types of vibration modes: slider modes and PZT modes. Only the slider modes are important to glide head applications. Moreover, natural frequencies predicted from the finite element analysis agree well with the experimental results within 5% of error. Finally, the finite element analysis identifies four critical slider dimensions whose tolerance will significantly vary the natural frequencies: PZT bonding length, wing thickness, slider thickness, and air bearing recess depth.


2013 ◽  
Vol 22 (6) ◽  
pp. 096369351302200
Author(s):  
S.K. Jalan ◽  
B. Nageswara Rao ◽  
S. Gopalakrishnan

Finite element analysis has been performed to study vibrational characteristics of cantilever single walled carbon nanotubes. Finite element models are generated by specifying the C-C bond rigidities, which are estimated by equating energies from molecular mechanics and continuum mechanics. Bending, torsion, and axial modes are identified based on effective mass for armchair, zigzag and chiral cantilever single walled carbon nanotubes, whose Young's modulus is evaluated from the bending frequency. Empirical relations are provided for frequencies of bending, torsion, and axial modes.


Sign in / Sign up

Export Citation Format

Share Document