Stress intensity factors and weight functions for semi-elliptical cracks using finite element alternating method

1994 ◽  
Vol 48 (3) ◽  
pp. 305-323 ◽  
Author(s):  
Ruijia Mu ◽  
D.V. Reddy
Author(s):  
S. W. Ng ◽  
K. J. Lau

Abstract In this paper a procedure is developed to assess the “local” accuracy of weight functions for finding stress intensity factors of centrally cracked finite plates given by Tsai and Ma (1989). It is found that the weight functions can be used to calculate stress intensity factors for practical cases, with “local” accuracy being within 6 %. In addition, weight functions generated from two finite element analyses are found to be accurate and may be used to assess new algorithms for finding weight functions.


1982 ◽  
Vol 104 (4) ◽  
pp. 299-307 ◽  
Author(s):  
T. Nishioka ◽  
S. N. Atluri

An alternating method, in conjunction with the finite element method and a newly developed analytical solution for an elliptical crack in an infinite solid, is used to determine stress intensity factors for semi-elliptical surface flaws in cylindrical pressure vessels. The present finite element alternating method leads to a very inexpensive procedure for routine evaluation of accurate stress intensity factors for flawed pressure vessels. The problems considered in the present paper are: (i) an outer semi-elliptical surface crack in a thick cylinder, and (ii) inner semi-elliptical surface cracks in a thin cylinder which were recommended for analysis by the ASME Boiler and Pressure Vessel Code (Section III, App. G, 1977). For each crack geometry of an inner surface crack, seven independent loadings, such as internal pressure loading on the cylinder surface and polynomial pressure loadings from constant to fifth order on the crack surface, are considered. From the analyses of these loadings, the magnification factors for the internal pressure loading and the polynomial influence functions for the polynomial crack surface loadings are determined. By the method of superposition, the magnification factors for internally pressurized cylinders are rederived by using the polynomial influence functions to check the internal consistency of the present analysis. These values agree excellently with the magnification factors obtained directly. The present results are also compared with the results available in literature.


1999 ◽  
Vol 67 (3) ◽  
pp. 606-615 ◽  
Author(s):  
W.-H. Chen ◽  
C.-L. Chang ◽  
C.-H. Tsai

The Laplace finite element alternating method, which combines the Laplace transform technique and the finite element alternating method, is developed to deal with the elastodynamic analysis of a finite plate with multiple cracks. By the Laplace transform technique, the complicated elastodynamic fracture problem is first transformed into an equivalent static fracture problem in the Laplace transform domain and then solved by the finite element alternating method developed. To do this, an analytical solution by Tsai and Ma for an infinite plate with a semi-infinite crack subjected to exponentially distributed loadings on crack surfaces in the Laplace transform domain is adopted. Finally, the real-time response can be computed by a numerical Laplace inversion algorithm. The technique established is applicable to the calculation of dynamic stress intensity factors of a finite plate with arbitrarily distributed edge cracks or symmetrically distributed central cracks. Only a simple finite element mesh with very limited number of regular elements is necessary. Since the solutions are independent of the size of time increment taken, the dynamic stress intensity factors at any specific instant can even be computed by a single time-step instead of step-by-step computations. The interaction among the cracks and finite geometrical boundaries on the dynamic stress intensity factors is also discussed in detail. [S0021-8936(00)02103-6]


1979 ◽  
Vol 101 (1) ◽  
pp. 12-17 ◽  
Author(s):  
T. E. Kullgren ◽  
F. W. Smith

A linear elastic analysis using the finite element-alternating method is conducted for problems of single semi-elliptical and double quarter-elliptical cracks near fastener holes. Mode-one stress intensity factors are presented along the crack periphery for cases of open and loaded holes and crack opening displacements are calculated. Results are shown for a variety of crack geometries and loading conditions and for two ratios of hole diameter to plate thickness.


2015 ◽  
Vol 39 (3) ◽  
pp. 557-568
Author(s):  
Shiuh-Chuan Her ◽  
Hao-Hi Chang

In this investigation, the weight function method was employed to calculate stress intensity factors for semi-elliptical surface crack in a hollow cylinder. A uniform stress and a linear stress distribution were used as the two references to determine the weight functions. These two factors were obtained by a three-dimensional finite element method which employed singular elements along the crack front and regular elements elsewhere. The weight functions were then applied to a wide range of semi-elliptical surface crack subjected to non-linear loadings. The results were validated against finite element data and compared with other analyses. In the parametric study, the effects of the ratio of the surface crack depth to length ranged from 0.2 to 1.0 and the ratio of the crack depth to the wall thickness ranged from 0.2 to 0.8 on stress intensity factors were investigated.


Author(s):  
George T. Sha

The use of the stiffness derivative technique coupled with “quarter-point” singular crack-tip elements permits very efficient finite element determination of both stress intensity factors and nodal weight functions. Two-dimensional results are presented in this paper to demonstrate that accurate stress intensity factors and nodal weight functions can be obtained from relatively coarse mesh models by coupling the stiffness derivative technique with singular elements. The principle of linear superposition implies that the calculation of stress intensity factors and nodal weight functions with crack-face loading, σ(rs), is equivalent to loading the cracked body with remote loads, which produces σ(rs) on the prospective crack face in the absence of crack. The verification of this equivalency is made numerically, using the virtual crack extension technique. Load independent nodal weight functions for two-dimensional crack geometry is demonstrated on various remote and crack-face loading conditions. The efficient calculation of stress intensity factors with the use of the “uncracked” stress field and the crack-face nodal weight functions is also illustrated. In order to facilitate the utilization of the discretized crack-face nodal weight functions, an approach was developed for two-dimensional crack problems. Approximations of the crack-face nodal weight functions as a function of distance, (rs), from crack-tip has been successfully demonstrated by the following equation: h a , r s = A a √ r s + B a + C a √ r s + D a r s Coefficients A(a), B(a), C(a) and D(a), which are functions of crack length (a), can be obtained by least-squares fitting procedures. The crack-face nodal weight functions for a new crack geometry can be approximated using cubic spline interpolation of the coefficients A, B, C and D of varying crack lengths. This approach, demonstrated on the calculation of stress intensity factors for single edge crack geometry, resulted in a total loss of accuracy of less than 1%.


Author(s):  
Adam R. Hinkle ◽  
James E. Holliday ◽  
David P. Jones

Fracture mechanics and fatigue crack-growth analysis rely heavily upon accurate values of stress intensity factors. They provide a convenient, single-parameter description to characterize the amplitude of the stress-field singularity at the crack tip, and are used to correlate brittle fracture and crack growth in pressure vessel and piping applications. Mode-I stress intensity factors that have been obtained for longitudinal semi-elliptical surface flaws on the inside of thick-walled cylinders using highly-refined finite element models are investigated. Using these results, weight function solutions are constructed and selected geometries are validated.


Sign in / Sign up

Export Citation Format

Share Document