Evoked potentials and long-term potentiation in the mouse dentate gyrus after stimulation of the entorhinal cortex

1982 ◽  
Vol 75 (1) ◽  
pp. 134-148 ◽  
Author(s):  
Kathy Payne ◽  
Charles J. Wilson ◽  
Stephen Young ◽  
Eva Fifkova ◽  
Philip M. Groves
2016 ◽  
Vol 1643 ◽  
pp. 27-34 ◽  
Author(s):  
Lida Tahmasebi ◽  
Alireza Komaki ◽  
Ruhollah Karamian ◽  
Siamak Shahidi ◽  
Abdolrahman Sarihi ◽  
...  

1983 ◽  
Vol 61 (10) ◽  
pp. 1156-1161 ◽  
Author(s):  
R. W. Skelton ◽  
J. J. Miller ◽  
A. G. Phillips

Brief periods of high-frequency stimulation of hippocampal afferents produce long-term potentiation (LTP) of synaptic transmission, but the minimum frequency capable of inducing this alteration in synaptic efficacy has not been specified. The present study used the repeated measurement of input–output curves in the perforant path – dentate gyrus system of freely moving rats to monitor synaptic efficacy and found that stimulation at 0.2 Hz, but not 0.04 Hz produced LTP. These results suggest that the minimum stimulation frequency capable of producing LTP is lower than previously described. Possible reasons for the discrepancy between the present and previous findings are discussed, along with the implications of low-frequency potentiation.


2008 ◽  
pp. 269-273
Author(s):  
A Viggiano ◽  
E Viggiano ◽  
M Monda ◽  
A Viggiano ◽  
S Ascione ◽  
...  

Production of superoxide anions in the incubation medium of hippocampal slices can induce long-term potentiation (LTP). Other reactive oxygen species (ROS) such as hydrogen peroxide are able to modulate LTP and are likely to be involved in aging mechanisms. The present study explored whether intracerebroventricular (ICV) injection of oxidant or antioxidant molecules could affect LTP in vivo. With this aim in mind, field excitatory post-synaptic potentials (fEPSPs) elicited by stimulation of the perforant pathway were recorded in the dentate gyrus of the hippocampal formation in urethane-anesthetized rats. N-acetyl-Lcysteine, hydrogen peroxide (H2O2) or hypoxanthine/xanthineoxidase solution (a superoxide producing system) were administrated by ICV injection. The control was represented by a group injected with saline ICV. Ten minutes after the injection, LTP was induced in the granule cells of the dentate gyrus by high frequency stimulation of the perforant pathway. Neither the H2O2 injection or the N-acetyl-L-cysteine injection caused any variation in the fEPSP at the 10-min post-injection time point, whereas the superoxide generating system caused a significant increase in the fEPSP. Moreover, at 60 min after tetanic stimulation, all treatments attenuated LTP compared with the control group. These results show that ICV administration of oxidant or antioxidant molecules can modulate LTP in vivo in the dentate gyrus. Particularly, a superoxide producing system can induce potentiation of the synaptic response. Interestingly, ICV injection of oxidants or antioxidants prevented a full expression of LTP compared to the saline injection.


Sign in / Sign up

Export Citation Format

Share Document