scholarly journals Derivatives of guanosine triphosphate-photoreactive substrates of escherichia coli RNA polymerase

FEBS Letters ◽  
1980 ◽  
Vol 112 (2) ◽  
pp. 296-298 ◽  
Author(s):  
E.D. Sverdlov ◽  
S.A. Tsarev ◽  
N.F. Kuznetsova
1978 ◽  
Vol 175 (1) ◽  
pp. 189-192 ◽  
Author(s):  
A D B Malcolm ◽  
J R Moffatt

1. Periodate oxidation of the ribose ring was used to synthesize derivatives of nucleoside triphosphates. 2. These oxidized nucleoside triphosphates. 2. These oxidized nucleoside triphosphates are competitive inhibitors of RNA polymerase. 3. On incubation, together with NaBH4, these oxidized labelled nucleotides are covalently bound to Escherichia coli RNA polymerase. 4. Nucleoside triphosphate substrates decrease the extent of labelling. 5. A lysine residue in an alpha-subunit is labelled. 6. The significance of these results in relation to the location of the nucleotide-binding site is discussed.


1999 ◽  
Vol 181 (10) ◽  
pp. 3185-3192 ◽  
Author(s):  
Hesna Yigit ◽  
William S. Reznikoff

ABSTRACT Tn5 transposase (Tnp) overproduction is lethal toEscherichia coli. Genetic evidence suggested that this killing involves titration of E. coli topoisomerase I (Topo I). Here, we present biochemical evidence that supports this model. Tn5 Tnp copurifies with Topo I while nonkilling derivatives of Tnp, Δ37Tnp and Δ55Tnp (Inhibitor [Inh]), show reduced affinity or no affinity, respectively, for Topo I. In agreement with these results, the presence of Tnp, but not Δ37 or Inh derivatives of Tnp, inhibits the DNA relaxation activity of Topo I in vivo as well as in vitro. Other proteins, including RNA polymerase, are also found to copurify with Tnp. For RNA polymerase, reduced copurification with Tnp is observed in extracts from a topA mutant strain, suggesting that RNA polymerase interacts with Topo I and not Tnp.


1987 ◽  
Vol 262 (9) ◽  
pp. 3940-3943
Author(s):  
M. Yamagishi ◽  
J.R. Cole ◽  
M. Nomura ◽  
F.W. Studier ◽  
J.J. Dunn

Sign in / Sign up

Export Citation Format

Share Document