guanosine triphosphate
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 37)

H-INDEX

50
(FIVE YEARS 4)

Author(s):  
Yachana Jha ◽  
Budheswar Dehury ◽  
S. P. Jeevan Kumar ◽  
Anurag Chaurasia ◽  
Udai B. Singh ◽  
...  

Abstract Background The plant growth is influenced by multiple interactions with biotic (microbial) and abiotic components in their surroundings. These microbial interactions have both positive and negative effects on plant. Plant growth promoting bacterial (PGPR) interaction could result in positive growth under normal as well as in stress conditions. Methods Here, we have screened two PGPR’s and determined their potential in induction of specific gene in host plant to overcome the adverse effect of biotic stress caused by Magnaporthe grisea, a fungal pathogen that cause blast in rice. We demonstrated the glucanase protein mode of action by performing comparative modeling and molecular docking of guanosine triphosphate (GTP) ligand with the protein. Besides, molecular dynamic simulations have been performed to understand the behavior of the glucanase-GTP complex. Results The results clearly showed that selected PGPR was better able to induce modification in host plant at morphological, biochemical, physiological and molecular level by activating the expression of β-1,3-glucanases gene in infected host plant. The docking results indicated that Tyr75, Arg256, Gly258, and Ser223 of glucanase formed four crucial hydrogen bonds with the GTP, while, only Val220 found to form hydrophobic contact with ligand. Conclusions The PGPR able to induce β-1,3-glucanases gene in host plant upon pathogenic interaction and β-1,3-glucanases form complex with GTP by hydrophilic interaction for induction of defense cascade for acquiring resistance against Magnaporthe grisea. Graphical abstract


2021 ◽  
pp. 1-8
Author(s):  
Ashraf Marzouk El Tantawi ◽  

Toll-like receptor-4 (TLR4), synthesis is regulated by JNK signaling, by three glucocorticoids isoforms, and by the three interferons isoforms, also depending on avaliablities of LPS & on long fatty acids chains with Arg and proline availabilities For performing and running the mitochondrial oxidative processes for producing fatty-acyl-CoA-synthetase followed by fatty-acyl-CoA-synthase followed by fatty-acyl-CoA-phospholipase productions for linear TLR4 active beta-subunits which will be transformed into TLR4-alpha upon phospholipase effects, which will follow phosphorylation process (alpha-oxidations) for generate Guanosine triphosphate cyclohydrolase (GTP-Chase) subunits which supposed to contain specific hydrophobic amino acids including Arg, Tyr, leu, proline…. Etc


Author(s):  
João Gabriel de Azevedo José Romero ◽  
Grazielle Mara Ferreira Costa ◽  
Luiz Paulo Carvalho Rocha ◽  
Silvia Regina Dowgan Tesseroli de Siqueira ◽  
Paula Rocha Moreira ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3998
Author(s):  
Maria G. Khrenova ◽  
Egor S. Bulavko ◽  
Fedor D. Mulashkin ◽  
Alexander V. Nemukhin

We report the results of calculations of the Gibbs energy profiles of the guanosine triphosphate (GTP) hydrolysis by the Arl3-RP2 protein complex using molecular dynamics (MD) simulations with ab initio type QM/MM potentials. The chemical reaction of GTP hydrolysis to guanosine diphosphate (GDP) and inorganic phosphate (Pi) is catalyzed by GTPases, the enzymes, which are responsible for signal transduction in live cells. A small GTPase Arl3, catalyzing the GTP → GDP reaction in complex with the activating protein RP2, constitute an essential part of the human vision cycle. To simulate the reaction mechanism, a model system is constructed by motifs of the crystal structure of the Arl3-RP2 complexed with a substrate analog. After selection of reaction coordinates, energy profiles for elementary steps along the reaction pathway GTP + H2O → GDP + Pi are computed using the umbrella sampling and umbrella integration procedures. QM/MM MD calculations are carried out, interfacing the molecular dynamics program NAMD and the quantum chemistry program TeraChem. Ab initio type QM(DFT)/MM potentials are computed with atom-centered basis sets 6-31G** and two hybrid functionals (PBE0-D3 and ωB97x-D3) of the density functional theory, describing a large QM subsystem. Results of these simulations of the reaction mechanism are compared to those obtained with QM/MM calculations on the potential energy surface using a similar description of the QM part. We find that both approaches, QM/MM and QM/MM MD, support the mechanism of GTP hydrolysis by GTPases, according to which the catalytic glutamine side chain (Gln71, in this system) actively participates in the reaction. Both approaches distinguish two parts of the reaction: the cleavage of the phosphorus-oxygen bond in GTP coupled with the formation of Pi, and the enzyme regeneration. Newly performed QM/MM MD simulations confirmed the profile predicted in the QM/MM minimum energy calculations, called here the pathway-I, and corrected its relief at the first elementary step from the enzyme–substrate complex. The QM/MM MD simulations also revealed another mechanism at the part of enzyme regeneration leading to pathway-II. Pathway-II is more consistent with the experimental kinetic data of the wild-type complex Arl3-RP2, whereas pathway-I explains the role of the mutation Glu138Gly in RP2 slowing down the hydrolysis rate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying-Li Liu ◽  
Li-Juan Wang ◽  
Yu Li ◽  
Ying-Hua Guo ◽  
Yuan Cao ◽  
...  

Rab GTPases are the subfamily of the small guanosine triphosphate (GTP)-binding proteins which participated in the regulation of various biological processes. Recent studies have found that plant Rabs play some specific functions. However, the functions of Rabs in xylem development in trees remain unclear. In this study, functional identification of PagRabE1b in Populus was performed. Quantitative reverse transcription PCR (qRT-PCR) results showed that PagRabE1b was highly accumulated in stems, especially in phloem and xylem tissues. Overexpression of PagRabE1b in poplar enhanced programmed cell death (PCD) and increased the growth rate and the secondary cell wall (SCW) thickness. Quantitative analysis of monosaccharide content showed that various monosaccharides were significantly increased in secondary xylem tissues of the overexpressed lines. Flow cytometry analysis revealed that the number of apoptotic cells in PagRabE1b-OE lines is more than a wild type (WT), which indicated that PagRabE1b may play an important role in PCD. Further studies showed that overexpression of PagRabE1b increased the expression level of genes involved in SCW biosynthesis, PCD, and autophagy. Collectively, the results suggest that PagRabE1b plays a positive role in promoting the xylem development of poplar.


Author(s):  
Heike L. Rafeld ◽  
Waldemar Kolanus ◽  
Ian R. van Driel ◽  
Elizabeth L. Hartland

Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.


2021 ◽  
Vol 7 (19) ◽  
pp. eabe8349
Author(s):  
Despoina Kerselidou ◽  
Bushra Saeed Dohai ◽  
David R. Nelson ◽  
Sarah Daakour ◽  
Nicolas De Cock ◽  
...  

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


2021 ◽  
Author(s):  
Marija Smokvarska ◽  
Yvon Jaillais ◽  
Alexandre Martinière

Abstract In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nano-scale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification and integration.


2021 ◽  
Vol 131 (1) ◽  
Author(s):  
Fang Huang ◽  
Kenneth E. Huffman ◽  
Zixi Wang ◽  
Xun Wang ◽  
Kailong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document