scholarly journals Complete amino acid sequence of human T-cell leukemia virus structural protein p15

FEBS Letters ◽  
1983 ◽  
Vol 162 (2) ◽  
pp. 390-395 ◽  
Author(s):  
Terry D. Copeland ◽  
Stephen Oroszlan ◽  
V.S. Kalyanaraman ◽  
M.G. Sarngadharan ◽  
Robert C. Gallo
2003 ◽  
Vol 23 (23) ◽  
pp. 8751-8761 ◽  
Author(s):  
Yoshiyuki Hakata ◽  
Masami Yamada ◽  
Hisatoshi Shida

ABSTRACT Human CRM1 (hCRM1) functions in the Rex-mediated mRNA export of human T-cell leukemia virus type 1 (HTLV-1) as an export receptor and as an inducing factor for Rex multimerization on its cognate RNA. Although there are only 24 amino acid differences between hCRM1 and rat CRM1 (rCRM1), rCRM1 can hardly support Rex activity, suggesting a role for rCRM1 as a determinant restricting the host range of HTLV-1. Here, we used a series of mutants, which were generated by interchanging residues of these CRM1s, to examine the relationship of hCRM1 functions. The functions for Rex multimerization and binding to nuclear export signals are mapped to different amino acid residues, and these are separable, suggesting that CRM1 not only functions as an export receptor but also participates in the formation of the RNA export complex through higher-ordered interaction with Rex. The region for the interaction with RanBP3, comprising four residues (amino acids [aa] 411, 414, 474, and 481), and the region for Rex multimerization, including two residues (aa 411 and 414), form an overlapped domain. Our results provide the molecular basis underlying the species-specific ability of HTLV-1 to propagate in human cells.


1998 ◽  
Vol 72 (8) ◽  
pp. 6504-6510 ◽  
Author(s):  
Bernadette Trentin ◽  
Nicole Rebeyrotte ◽  
Robert Z. Mamoun

ABSTRACT The first description of an active form of a recombinant human T-cell leukemia virus type 1 (HTLV-1) reverse transcriptase (RT) and subsequent predictions of its amino acid sequence and quaternary structure are reported here. By using amino acid alignment methods, the NH2 and COOH termini of the RT, RNase H (RH), and integrase (IN) domains of the Pol polyprotein were determined. The HTLV-1 RT seems to be unique since its NH2 terminus is probably encoded by the pro open reading frame (ORF) fused downstream, via a transframe peptide, to the polypeptide encoded by the pol ORF. The HTLV-1 Pol amino acid sequence was revealed to be highly similar to that of Rous sarcoma virus (RSV), particularly at the RT-RH hinge region. These two domains remain linked for RSV; this may also be the case for HTLV-1. In light of these results, RT, RT-RH, and RT-RH-IN genes were constructed and introduced into His-tagged protein expression vectors. The corresponding proteins were synthesized in vitro, and the DNA polymerase activities of different protein combinations were tested. Solely the RT-RH–RT-RH-IN combination was found to have a significant activity level. Velocity sedimentation analysis suggested that the HTLV-1 RT-RH and RT-RH-IN monomers are likely associated in an oligomeric structure, probably of the α3/β type.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Norbert Kassay ◽  
János András Mótyán ◽  
Krisztina Matúz ◽  
Mária Golda ◽  
József Tőzsér

The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1336-1342 ◽  
Author(s):  
TL Chorba ◽  
R Brynes ◽  
VS Kalyanaraman ◽  
M Telfer ◽  
R Ramsey ◽  
...  

Abstract Human T cell leukemia virus type II (HTLV-II) has been isolated from a patient (Mo) with features of leukemic reticuloendotheliosis (LRE) and from a patient with acquired immunodeficiency syndrome (AIDS). We have obtained another isolate of HTLV-II from a patient (CM) with severe hemophilia A, pancytopenia, and a 14-year history of staphylococcal and candidal infections but no evidence of T cell leukemia/lymphoma, AIDS, or LRE. Fresh mononuclear cells and cultured lymphocytes from CM express retroviral antigens indistinguishable by molecular criteria from HTLV-IIMo. Leukocyte cultures from CM yield hyperdiploid (48,XY, +2, +19) continuous lymphoid lines; human fetal cord blood lymphocytes (CBL) are transformed by cocultivation with these CM cell cultures but retain normal cytogenetic constitution. Electron microscopic examination of the CM cultures and transformed CBL reveals budding of extracellular viral particles, intracellular tubuloreticular structures, and viral particles contained within intracellular vesicles. CM cell cultures and the transformed CBL do not require exogenous interleukin 2, have T cell cytochemical features and mature T helper phenotypes, and exhibit minimal T helper and profound T suppressor activity on pokeweed mitogen-stimulated differentiation of normal B cells. These characteristics, which are similar to those observed with the first HTLV-II isolate, may represent properties of all HTLV-II-infected T cells.


2016 ◽  
Vol 27 (9) ◽  
pp. 1059-1066 ◽  
Author(s):  
Hisayoshi Kondo ◽  
Midori Soda ◽  
Norie Sawada ◽  
Manami Inoue ◽  
Yoshitaka Imaizumi ◽  
...  

2017 ◽  
Vol 55 (9) ◽  
pp. 2838-2849 ◽  
Author(s):  
Madoka Kuramitsu ◽  
Tsuyoshi Sekizuka ◽  
Tadanori Yamochi ◽  
Sanaz Firouzi ◽  
Tomoo Sato ◽  
...  

ABSTRACTWestern blotting (WB) for human T cell leukemia virus type 1 (HTLV-1) is performed to confirm anti-HTLV-1 antibodies detected at the initial screening of blood donors and in pregnant women. However, the frequent occurrence of indeterminate results is a problem with this test. We therefore assessed the cause of indeterminate WB results by analyzing HTLV-1 provirus genomic sequences. A quantitative PCR assay measuring HTLV-1 provirus in WB-indeterminate samples revealed that the median proviral load was approximately 100-fold lower than that of WB-positive samples (0.01 versus 0.71 copy/100 cells). Phylogenic analysis of the complete HTLV-1 genomes of WB-indeterminate samples did not identify any specific phylogenetic groups. When we analyzed the nucleotide changes in 19 HTLV-1 isolates from WB-indeterminate samples, we identified 135 single nucleotide substitutions, composed of four types, G to A (29%), C to T (19%), T to C (19%), and A to G (16%). In the most frequent G-to-A substitution, 64% occurred at GG dinucleotides, indicating that APOBEC3G is responsible for mutagenesis in WB-indeterminate samples. Moreover, interestingly, five WB-indeterminate isolates had nonsense mutations in Pol and/or Tax, Env, p12, and p30. These findings suggest that WB-indeterminate carriers have low production of viral antigens because of a combination of a low proviral load and mutations in the provirus, which may interfere with host recognition of HTLV-1 antigens.


Sign in / Sign up

Export Citation Format

Share Document