scholarly journals Biochemical Characterization, Specificity and Inhibition Studies of HTLV-1, HTLV-2, and HTLV-3 Proteases

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Norbert Kassay ◽  
János András Mótyán ◽  
Krisztina Matúz ◽  
Mária Golda ◽  
József Tőzsér

The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.

2016 ◽  
Vol 27 (9) ◽  
pp. 1059-1066 ◽  
Author(s):  
Hisayoshi Kondo ◽  
Midori Soda ◽  
Norie Sawada ◽  
Manami Inoue ◽  
Yoshitaka Imaizumi ◽  
...  

2006 ◽  
Vol 97 (9) ◽  
pp. 836-841 ◽  
Author(s):  
Takayuki Nitta ◽  
Masayuki Kanai ◽  
Eiji Sugihara ◽  
Masakazu Tanaka ◽  
Binlian Sun ◽  
...  

1986 ◽  
Vol 83 (12) ◽  
pp. 4524-4528 ◽  
Author(s):  
M. Shimoyama ◽  
Y. Kagami ◽  
K. Shimotohno ◽  
M. Miwa ◽  
K. Minato ◽  
...  

2003 ◽  
Vol 77 (14) ◽  
pp. 7728-7735 ◽  
Author(s):  
Jianxin Ye ◽  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8+ T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 971-976 ◽  
Author(s):  
SJ Greenberg ◽  
ES Jaffe ◽  
GD Ehrlich ◽  
NJ Korman ◽  
BJ Poiesz ◽  
...  

Abstract Kaposi's sarcoma (KS) developed in a patient with human T-cell leukemia virus type I (HTLV-I)-associated adult T-cell leukemia who was treated with a short-term course of monoclonal antibody immunotherapy. The presentation was transient and temporally related to the underlying clinical course. The association of KS in an HTLV-I infected, but not human immunodeficiency virus (HIV)-infected, individual should alert investigators to the occurrence of KS in retroviral-associated diseases other than acquired immunodeficiency disease syndrome. Recognition of the similarities and differences between HTLV-I and HIV infections may provide insights concerning the angiopathogenesis of KS.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Takuro Fukumoto ◽  
Emi Ikebe ◽  
Masao Ogata ◽  
Kazuhiro Kohno ◽  
Madoka Kuramitsu ◽  
...  

ABSTRACT We report two complete proviral genome sequences of human T-cell leukemia virus type 1 (HTLV-1) isolated from the peripheral blood specimens of acute type adult T-cell leukemia (ATL) patients in Oita Prefecture, Japan.


2006 ◽  
Vol 80 (5) ◽  
pp. 2495-2505 ◽  
Author(s):  
Ken Murata ◽  
Toshihisa Hayashibara ◽  
Kazuyuki Sugahara ◽  
Akiko Uemura ◽  
Taku Yamaguchi ◽  
...  

ABSTRACT Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus.


Sign in / Sign up

Export Citation Format

Share Document