Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli

FEBS Letters ◽  
1989 ◽  
Vol 257 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Toni M. Kutchan
Author(s):  
Rajshree Sahu ◽  
Suneel Kumar ◽  
Ravindra Prasad Aharwal ◽  
Sardul Singh Sandhu

Objective: The aim of the present study was to isolate the endophytic fungi from medicinal plant Rauvolfia serpentina (L.) Benth. ex Kurz. (Family Apocynaceae) and observed their antibacterial activity against bacteria as well as the molecular characterization of most potent fungal strain. Methods: Collection and isolation of endophytic fungi from different parts (root, shoot, leaves) of Rauvolfia serpentina plant. Screening of endophytic fungi for antibacterial activity was scrutinised against six bacteria viz. Bacillus subtilis, Enterococcus sp., Klebsiella pneumoniae, Escherichia coli, Salmonella typhimurium and Streptococcus pyogenes by using Agar well diffusion method. For molecular sequencing of potent fungi, the DNA was extracted, quantified and amplified by using two oligonucleotide primers ITS4 and ITS6 in PCR.Results: A total seven endophytic fungi Aspergillus niger, Penicillium citrinum, Cladosporium sp., Curvularia lunata, Aspergillus sp., Alternaria sp. and Aspergillus fumigatus were isolated from different parts of Rauvolfia serpentina and fungal strain Penicillium citrinum was shown the maximum zone of inhibition against Bacillus subtilis (23.0±0.12 mm), Escherichia coli (19.9±0.16 mm), Streptococcus pyrogens (19.2±0.59 mm), Enterococcus sp., (17.2±0.08 mm), Klebsiella pneumoniae (18.9±0.16 mm) and Salmonella typhimurium (15.1±0.16 mm). The molecular sequencing of the potent fungi was done by primers (ITS4 and ITS6) which showed strong specificity with fungal DNA and the percentages of identical matches of ITS4 and ITS6 DNA sequences in the GeneBank database (NCBI) were determined to 98 %.Conclusion: In the present study, the endophytic fungal strain Penicillium citrinumshowed the potential source of antibacterial bioactive compounds and molecular sequencing of this fungus helps in future to determine the various metabolic pathways that are responsible for the production of such type of novel compounds. 


2002 ◽  
Vol 366 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Jean-François HOEFFLER ◽  
Andréa HEMMERLIN ◽  
Catherine GROSDEMANGE-BILLIARD ◽  
Thomas J. BACH ◽  
Michel ROHMER

In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-2H]deoxy-d-xylulose ([4-2H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-2H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase.


2010 ◽  
Vol 82 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Mami Yamazaki ◽  
Takashi Asano ◽  
Yasuyo Yamazaki ◽  
Supaart Sirikantaramas ◽  
Hiroshi Sudo ◽  
...  

Camptothecin is one of the clinically used anticancer compounds derived from plants. We have established a hairy root culture Ophiorrhiza pumila, which efficiently produces camptothecin. The strictosidine synthase cDNA was obtained from O. pumila, and its properties were characterized using recombinant protein expressed in Escherichia coli. The mechanisms of camptothecin transport and self-resistance of producing plant cells have also been investigated. These studies offer a basis for pathway engineering of camptothecin in the future.


Sign in / Sign up

Export Citation Format

Share Document