pathway engineering
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 108)

H-INDEX

46
(FIVE YEARS 7)

Author(s):  
Yang Zhang ◽  
Xiao Guo ◽  
Huaiyi Yang ◽  
Shuobo Shi

Fatty acid alkyl esters have broad applications in biofuels, lubricant formulas, paints, coatings, and cosmetics. Traditionally, these esters are mostly produced through unsustainable and energy-intensive processes. In contrast, microbial production of esters from renewable and sustainable feedstocks may provide a promising alternative and has attracted widespread attention in recent years. At present, yeasts are used as ideal hosts for producing such esters, due to their availability for high-density fermentation, resistance to phage infection, and tolerance against toxic inhibitors. Here, we summarize recent development on the biosynthesis of alkyl esters, including fatty acid ethyl esters (FAEEs), fatty acid short-branched chain alkyl esters (FASBEs), and wax esters (WEs) by various yeast cell factories. We focus mainly on the enzyme engineering strategies of critical wax ester synthases, and the pathway engineering strategies employed for the biosynthesis of various ester products. The bottlenecks that limit productivity and their potential solutions are also discussed in this review.


2022 ◽  
Author(s):  
Matthew C Haines ◽  
Benedict Carling ◽  
James Marshall ◽  
Marko Storch ◽  
Paul C Freemont

Standardized DNA assembly methods utilizing modular components provide a powerful framework to explore design spaces and iterate through Design-Build-Test-Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use, while enabling simple hierarchical assemblies through an idempotent format. These attributes facilitate various applications including pathway engineering, ribosome binding site tuning, fusion protein synthesis and multiplex gRNA expression. In this work we present basicsynbio, an open-source software encompassing a Web App (https://basicsynbio.web.app/) and Python Package (https://github.com/LondonBiofoundry/basicsynbio). With basicsynbio, users can access commonly used BASIC parts and linkers while robustly designing new parts and assemblies with exception handling for common design errors. Furthermore, users can export sequence data and create build instructions for manual or automated workflows. The generation of build instructions relies on the BasicBuild Open Standard which is easily parsed for bespoke workflows and is serialised in Java Script Object Notation for transfer and storage. We demonstrate basicsynbio by assembling a collection of 30 BASIC-compatible vectors using various sequences including modules from the Standard European Vector Architecture (SEVA). The BASIC SEVA collection encompasses plasmids containing six antibiotic resistance markers and five origins of replication from different compatibility groups, including a temperature-sensitive variant. We deposit the collection on Addgene under an OpenMTA agreement, making them available. Furthermore, these sequences are accessible from within the basicsynbio application programming interface along with other collections of parts and linkers, providing an ideal environment to design BASIC DNA assemblies for bioengineering applications.


Author(s):  
Babita K. Verma ◽  
Ahmad A. Mannan ◽  
Fuzhong Zhang ◽  
Diego A. Oyarzún

Author(s):  
Monica E. Neugebauer ◽  
Elijah N. Kissman ◽  
Jorge A. Marchand ◽  
Jeffrey G. Pelton ◽  
Nicholas A. Sambold ◽  
...  

2021 ◽  
Vol 111 ◽  
pp. 139-146
Author(s):  
Xiaoying Zhang ◽  
Qingbin Wu ◽  
Xiaoyuan Zhang ◽  
Zhongyuan Lv ◽  
Xiaoting Mo ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fraser Andrews ◽  
Matthew Faulkner ◽  
Helen S. Toogood ◽  
Nigel S. Scrutton

AbstractCurrent industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.


Sign in / Sign up

Export Citation Format

Share Document