hairy root culture
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 49)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
pp. 735-759
Author(s):  
Pradip Chandra Deka

Agrobacterium rhizogenes induces hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection, when cultured in hormone free medium, show high growth rate and genetic stability. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Several elicitation methods can be used to further enhance the production and accumulation of secondary metabolites. Thus, hairy root culture offer promise for high production and productivity of valuable secondary metabolites in many plants. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for pharmaceutical industry. Hairy root cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites, and for phytoremediation due to their abundant neoplastic root proliferation property. Various applications of hairy root cultures and potential problems associated with them are discussed in this chapter.


2021 ◽  
Author(s):  
Pijush Paul ◽  
Sukanya Majumdar ◽  
Sumita Jha

Abstract Hairy root culture (HRC) is a valuable biotechnological tool for the production of plant secondary metabolites. Secondary metabolome study of Arabidopsis thaliana can be helpful in understanding the biological roles of various secondary metabolites present in it and HRC constructs the base of such study. The present work deals with the establishment of Agrobacterium rhizogenes strains transformed HRC of A. thaliana with very high transformation frequency resulting in long term hairy root cultures grown in hormone free media. Optimization of culture medium and standardisation of co-cultivation period are the key role players in obtaining high frequency of hairy roots. Four days of preculture in CIM medium and five min of co-cultivation in the bacterial suspension were found to be optimal conditions for root induction. This protocol could become a powerful tool for transcriptomics and proteomics-based studies for different transgenic root lines of A. thaliana.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlan Piao ◽  
Jinguo Wu ◽  
Min-Long Cui

AbstractAnthocyanins are the largest group of water-soluble pigments and beneficial for human health. Although most plants roots have the potential to express natural biosynthesis pathways required to produce specialized metabolites such as anthocyanins, the anthocyanin synthesis is specifically silenced in roots. To explore the molecular mechanism of absence and production ability of anthocyanin in the roots, investigated the effect of a bHLH gene AmDelila, and an R2R3-MYB gene AmRosea1, which are the master regulators of anthocyanin biosynthesis in Antirrhinum majus flowers, by expressing these genes in transformed hairy roots of A. majus. Co-ectopic expression of both AmDelila and AmRosea1 significantly upregulated the expression of the key target structural genes in the anthocyanin biosynthesis pathway. Furthermore, this resulted in strongly enhanced anthocyanin accumulation in transformed hairy roots. Ectopic expression of AmDelila alone did not gives rise to any significant anthocyanin accumulation, however, ectopic expression of AmRosea1 alone clearly upregulated expression of the main structural genes as well as greatly promoted anthocyanin accumulation in transformed hairy roots, where the contents reached 0.773–2.064 mg/g fresh weight. These results suggest that AmRosea1 plays a key role in the regulatory network in controlling the initiation of anthocyanin biosynthesis in roots, and the combination of AmRosea1 and hairy root culture is a powerful tool to study and production of anthocyanins in the roots of A. majus.


2021 ◽  
Vol 22 (11) ◽  
pp. 5671
Author(s):  
Mohsen Hesami ◽  
Austin Baiton ◽  
Milad Alizadeh ◽  
Marco Pepe ◽  
Davoud Torkamaneh ◽  
...  

For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.


2021 ◽  
Vol 07 ◽  
Author(s):  
Chang-Qi Hao ◽  
Shuai-Run Wang ◽  
Yi Wang ◽  
Xin-Yi Hou ◽  
Ya-Xuan Jiang ◽  
...  

Background: Hairy root culture has been widely used in the production of metabolites in dicotyledons, and a large number of food crops and medicinal plants in monocotyledons need to be developed, but there are many difficulties in the induction of hairy roots in monocotyledons. The purpose of this paper is to introduce the inducing methods, influencing factors and application of hairy roots in monocotyledons, and to promote the development of hairy root system in monocotyledons. Methods: The mechanism of action of Agrobacterium rhizogenes and the current situation of hairy root induction, induction methods and influencing factors of monocotyledons were summarized so as to provide convenience for efficient acquisition of hairy root of monocotyledons. Results: Monocotyledons are not easy to produce phenols, cells are prone to lignification, adverse differentiation and selective response to Agrobacterium rhizogenes strains. It is proposed that before induction, plant varieties and explants should be selected, and different infection strains should be screened. In the process of hairy root induction, exogenous inducers such as acetosyringone can be added. Although these factors can provide some help for the induction of hairy roots in monocotyledons, we still need to pay attention to the disadvantages of monocotyledons from dicotyledons at the cellular level. Conclusion: A large number of food crops and medicinal plants are monocotyledons. Hairy root culture can be used to help the breeding and production of medicinal substances. Therefore, it is necessary to pay attention to the selection of varieties and explants, the selection of Agrobacterium rhizogenes and the addition of acetosyringone in the process of hairy root induction so as to improve the production efficiency and facilitate the development and utilization of monocotyledons.


Author(s):  
Helia Bahmani ◽  
Asad Maroufi ◽  
Mohammad Majdi ◽  
Barat Ali Fakheri

2021 ◽  
Author(s):  
Phadtraphorn Chayjarung ◽  
Wannakan Poonsap ◽  
Chanyanut Pankaew ◽  
Onrut Inmano ◽  
Anupan Kongbangkerd ◽  
...  

Abstract Peanut (Arachis hypogaea L.) hairy roots are a potential tool for stilbene compound production. This study focuses on the most efficient elicitation strategy for inducing stilbene compound production, especially for the prenylated forms of trans-arachidin-1 and trans-arachidin-3. To the best of our knowledge, this is the first report of simultaneous treatment involving chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD); CHT+MeJA+CD in peanut hairy roots to induce substantial amounts of trans-arachidin-1 and trans-arachidin-3 at 72 h of the elicitation period. The results demonstrate the highest amounts of trans-arachidin-1 and trans-arachidin-3, with 684.30 ± 183.85 and 543.94 ± 171.17 mg/g dry weight of hairy roots, respectively. The highest antioxidant capacity determined by ABTS and FRAP assays was 188.95 ± 0.43 µmol Trolox/g dry weight of hairy roots and 24.61 ± 0.50 mg ascorbic acid/g dry weight of hairy roots, respectively, while the highest phenolic content was also detected in this crude extract, with 8.67 ± 0.11 mg gallic acid/g dry weight of hairy roots. The antioxidant and pro-oxidant activity of the CHT+MeJA+CD crude extract in the protection and damage of DNA is of great interest and can have major positive impacts on health promotion and disease prevention.


Sign in / Sign up

Export Citation Format

Share Document