Convection heat transfer coefficients for turbulent flow between parallel plates with unequal heat fluxes

1961 ◽  
Vol 1 (4) ◽  
pp. 306-311 ◽  
Author(s):  
Henry Barrow
1996 ◽  
Vol 118 (1) ◽  
pp. 31-37 ◽  
Author(s):  
F. J. Asfia ◽  
B. Frantz ◽  
V. K. Dhir

External cooling of a light water reactor vessel by flooding of the concrete cavity with subcooled water is one of several management strategies currently being considered for accidents in which significant relocation of core material is predicted to occur. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 was contained in a Pyrex bell jar, which was cooled externally with subcooled water. The pool was heated using a 750 W magnetron taken from a conventional microwave. The pool had a nearly adiabatic free surface. The vessel wall temperature was not uniform and varied from the stagnation point to the free surface. A series of chromel–alumel thermocouples was used to measure temperatures in both steady-state and transient conditions. Each thermocouple was placed in a specific vertical and radial location in order to determine the temperature distribution throughout the pool and along the inner and outer walls of the vessel. In the experiments, pool depth and radius were varied parametrically. Both local and averages heat transfer coefficients based on pool maximum temperature were obtained. Rayleigh numbers based on pool height were varied from 2 × 1010 to 1.1 × 1014. Correlations for the local heat transfer coefficient dependence on pool angle and for the dependence of average Nusselt number on Rayleigh number and pool depth have been developed.


Author(s):  
Pei-Xue Jiang ◽  
Yi-Jun Xu ◽  
Run-Fu Shi ◽  
S. He

Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube with a diameter of 0.948 mm was investigated experimentally and numerically. The local heat transfer coefficients, bulk fluid temperatures and wall temperatures were measured and presented. The effects of inlet fluid temperature, fluid pressure, mass flow rate, heat flux and wall thickness on the convection heat transfer in the mini tube were investigated. The experimental results were compared with calculated results using well-known correlations and numerical simulations. The results showed that the variable thermophysical properties of supercritical CO2 significantly influenced the convection heat transfer in the vertical mini tube and that for the studied conditions the influence of the wall thickness on the convection heat transfer in the mini tube was not great. For bulk fluid temperatures higher than the pseudo-critical temperature, the simulation results and the correlation results for the convection heat transfer coefficients in the mini tube corresponded well to the experimentally measured results.


1964 ◽  
Vol 86 (2) ◽  
pp. 180-186 ◽  
Author(s):  
M. W. Maresca ◽  
O. E. Dwyer

Experimental results were obtained for the case of in-line flow of mercury through an unbaffled bundle of circular rods, and they were compared with theoretical predictions. The bundle consisted of 13 one-half-in-dia rods arranged in an equilateral triangular pattern, the pitch:diameter ratio being 1.750. Measurements were taken only on the central rod. Six different rods were tested. All rods in the bundle were electrically heated to provide equal and uniform heat fluxes throughout the bundle. The rods were of the Calrod type. The test rods had copper sheaths with fine thermocouples imbedded below the surface for measuring surface temperatures. Some rods were plated with a layer of nickel, followed by a very thin layer of copper, to provide “wetting” conditions, while others were chromeplated to provide “nonwetting” conditions. Heat-transfer coefficients were obtained under the following conditions: (a) Prandtl number, 0.02; (b) Reynolds number range, 7500 to 200,000; (c) Peclet number range, 150 to 4000; (d) “Wetting” versus “nonwetting”; (e) Both transition and fully established flow; (f) Variation of Lf/De ratio from 4 to 46. The precision of the results is estimated to be within 2 to 3 percent. An interesting finding, consistent with earlier predictions, was that the Nusselt number, under fully established turbulent-flow conditions, remained essentially constant, at the lower end of the turbulent flow regime, until a Reynolds number of about 40,000 was reached.


1989 ◽  
Vol 111 (2) ◽  
pp. 129-134 ◽  
Author(s):  
C. Rajakumar ◽  
D. Johnson

A numerical simulation of the buoyancy-induced flow around microelectronic components mounted on a circuit board has been performed using the finite element method. The circuit board is modeled by a vertical plate on which rectangular strip heating surfaces are mounted. Computations have been performed in two-dimensional plane applying a simplifying assumption that the circuit board and the strip heating surfaces are infinitely long. The Navier-Stokes, the flow continuity and the energy equations for laminar flow have been considered in the finite element discretizations. Results of the computations are presented in the form of temperature contour plots and velocity vector plots in the flow field. The convection heat transfer coefficients at the surface of the microelectronic components are presented as a function of their height. The convection coefficients computed have been compared with experimental correlations of free convection heat transfer found in the literature.


Sign in / Sign up

Export Citation Format

Share Document