Heat and mass transfer to a turbulent falling film—II

1989 ◽  
Vol 32 (9) ◽  
pp. 1796-1798 ◽  
Author(s):  
A. Faghri ◽  
R.A. Seban
2002 ◽  
Vol 15 (3) ◽  
pp. 191-205 ◽  
Author(s):  
Ki Bong Lee ◽  
Byung Hee Chun ◽  
Jae Cheol Lee ◽  
Jae Chun Hyun ◽  
Sung Hyun Kim

Author(s):  
L. Y. Zhang ◽  
Y. Li ◽  
Y. Wang ◽  
L. X. Cao ◽  
X. Z. Meng

Absorber is an important component in absorption refrigerating system. Its performance plays a significant role on the overall efficiency of absorption refrigerating system. The nanofluids which can enhance the heat and mass transfer will be utilized to absorber for enhancing the water vapor absorption process and improving the absorber efficiency. The software CFD-FLUENT is used to analyze the falling film absorption process of the nanofluids, which consists of H2O/LiBr solution with Fe3O4 nanoparticles in this paper. The results indicate that the enhancing heat and mass transfer of nanofluids is related to the nanoparticle concentration and size. The stronger the nanoparticle concentration, the greater enhancement of heat and mass transfer of falling film; while the smaller the nanoparticle size, the greater enhancement of heat and mass transfer of falling film. It is also found that the enhancement ratio of heat and mass transfer flux reach 1.48 and 1.37, respectively, as the Fe3O4 nanoparticles mass concentration of 0.01wt% and the size of 50nm.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


2011 ◽  
Vol 5 (4) ◽  
pp. 358-366
Author(s):  
Xianbiao Bu ◽  
Weibin Ma ◽  
Huashan Li

1996 ◽  
Vol 118 (1) ◽  
pp. 45-49 ◽  
Author(s):  
T. A. Ameel ◽  
H. M. Habib ◽  
B. D. Wood

An analytical solution is presented for the effect of air (nonabsorbable gas) on the heat and mass transfer rates during the absorption of water vapor (absorbate) by a falling laminar film of aqueous lithium bromide (absorbent), an important process in a proposed open-cycle solar absorption cooling system. The analysis was restricted to the entrance region where an analytical solution is possible. The model consists of a falling film of aqueous lithium bromide flowing down a vertical wall which is kept at uniform temperature. The liquid film is in contact with a gas consisting of a mixture of water vapor and air. The gas phase is moving under the influence of the drag from the falling liquid film. The governing equations are written with a set of interfacial and boundary conditions and solved analytically for the two phases. Heat and mass transfer results are presented for a range of uniform inlet air concentrations. It was found that the concentration of the nonabsorbable gas increases sharply at the liquid gas interface. The absorption of the absorbate in the entrance region showed a continuous reduction with an increase in the amount of air.


1981 ◽  
Vol 103 (1) ◽  
pp. 67-74 ◽  
Author(s):  
C. S. P. Peng ◽  
J. R. Howell

Desiccant dehumidification and air-conditioning systems require careful design to minimize large parasitic power requirements for pumps and blowers. Each component depends to some extent on overall system characteristics, yet each component must be carefully modeled in itself. The most challenging part of optimizing a system is the absorber design. In order to increase the heat and mass transfer rate while minimizing the pressure loss in the absorber, a direct contact falling film fin-tube heat exchanger is analyzed with water flowing on the tube side and desiccant flowing as a falling film on the fin side. Air is cooled and dehumidified by the water and desiccant as it is circulated through the absorber. A model to analyze the heat and mass transfer in the absorber has been developed. An optimum design has been selected based on not only thermal performance but also practical and economic considerations. Application of the absorber design is then made to design of a complete desiccant system for use with low-temperature heat as an energy source.


Sign in / Sign up

Export Citation Format

Share Document