Metal acetylacetonates: Interpretation of infrared spectra and new evidence for ligand field effects

1967 ◽  
Vol 3 (2) ◽  
pp. 51-55 ◽  
Author(s):  
R.D. Hancock ◽  
H.W. Sacks ◽  
Rosemary Thornton ◽  
David A. Thornton
2021 ◽  
Author(s):  
Lewis Thomas-Hargreaves ◽  
Marcus Giansiracusa ◽  
Matthew Gregson ◽  
Emanuele Zanda ◽  
Felix O'Donnell ◽  
...  

Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For...


2018 ◽  
Author(s):  
Justin K. Kirkland ◽  
Shahriar N. Khan ◽  
Bryan Casale ◽  
Evangelos Miliordos ◽  
Konstantinos Vogiatzis

<p>We have performed high-level wave function theory calculations on bare FeO2+ and a series of non-heme Fe(IV)-oxo model complexes in order to elucidate the electronic properties and the ligand field effects on those channels. Our results suggest that a coordination environment formed by a weak field gives access to both competitive channels, yielding more reactive Fe(IV)-oxo sites. On the contrary, a strong ligand environment stabilizes only the σ-channel. Our concluding remarks will aid on the derivation of new structure-reactivity descriptors that can contribute on the development of the next generation of functional catalysts.</p>


2018 ◽  
Author(s):  
Justin K. Kirkland ◽  
Shahriar N. Khan ◽  
Bryan Casale ◽  
Evangelos Miliordos ◽  
Konstantinos Vogiatzis

<p>We have performed high-level wave function theory calculations on bare FeO2+ and a series of non-heme Fe(IV)-oxo model complexes in order to elucidate the electronic properties and the ligand field effects on those channels. Our results suggest that a coordination environment formed by a weak field gives access to both competitive channels, yielding more reactive Fe(IV)-oxo sites. On the contrary, a strong ligand environment stabilizes only the σ-channel. Our concluding remarks will aid on the derivation of new structure-reactivity descriptors that can contribute on the development of the next generation of functional catalysts.</p>


1985 ◽  
Vol 24 (8) ◽  
pp. 1159-1165 ◽  
Author(s):  
A. Ceulemans ◽  
M. Dendooven ◽  
L. G. Vanquickenborne

1972 ◽  
Vol 5 (11) ◽  
pp. 4291-4301 ◽  
Author(s):  
A. J. H. Wachters ◽  
W. C. Nieuwpoort
Keyword(s):  

1986 ◽  
Vol 25 (22) ◽  
pp. 3984-3987 ◽  
Author(s):  
Michela Di Casa ◽  
Luigi Fabbrizzi ◽  
Angelo Perotti ◽  
Antonio Poggi ◽  
Renato Riscassi

1980 ◽  
Vol 33 (4) ◽  
pp. 737 ◽  
Author(s):  
M Palaniandavar ◽  
C Natarajan

Metal(II) bis-chelates of the type ML2 [M = CoII, NiII, CuII; L = 2'- hydroxy-5'-X-chalcone where X = H, CH3, Cl] have been prepared and studied. Structures have been assessed by the measurement of magnetic moments, ligand field and infrared spectra and thermal properties. These chelates possess low-spin trans-square-planar configuration and show resistance to adduct formation in contrast to metal(II) chelates of β-diketones, salicylaldehyde, o-hydroxyaryl ketones and esters and o-hydroxy-crotonophenones, which have high-spin octahedral configuration. Extensive conjugation lowers the energy of the π3* orbital which enters into a very strong dπ-π3* interaction leading to spin-pairing. ��� Infrared spectra indicate that the carbonyl group is perturbed only slightly by coordination to metal. A change in metal ion affects v(C=O), v(M-O) and other vibrations and the order of stability, namely, Co ≈ Ni < Cu, inferred from these vibrations is as expected for the low-spin square configuration of the chelates. Introduction of substituents (5'-X) alters only v(M-O) significantly and the order of stability, namely, Cl > CH3 > H, derived from v(M-O) is consistent with Taft's resonance polar parameters of the substituents. All these observations are explained by the electron sink property of the phenyl group.


Sign in / Sign up

Export Citation Format

Share Document