electron sink
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 32 (1) ◽  
pp. R49-R51
Author(s):  
Karla Iveth Aguilera-Campos ◽  
Courtney W. Stairs

Author(s):  
Yume Mai ◽  
Alexandria K. Balzen ◽  
Rebecca K. Torres ◽  
Michael P. Callahan ◽  
Adam C. Colson
Keyword(s):  

2021 ◽  
Vol 118 (39) ◽  
pp. e2107939118 ◽  
Author(s):  
Jessica H. van Wonderen ◽  
Katrin Adamczyk ◽  
Xiaojing Wu ◽  
Xiuyun Jiang ◽  
Samuel E. H. Piper ◽  
...  

Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.


2021 ◽  
Vol 30 (9) ◽  
pp. 095004
Author(s):  
S N Andreev ◽  
A V Bernatskiy ◽  
N A Dyatko ◽  
I V Kochetov ◽  
V N Ochkin
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ginga Shimakawa ◽  
Hitomi Hanawa ◽  
Shinya Wada ◽  
Guy T. Hanke ◽  
Yusuke Matsuda ◽  
...  

Against the potential risk in oxygenic photosynthesis, that is, the generation of reactive oxygen species, photosynthetic electron transport needs to be regulated in response to environmental fluctuations. One of the most important regulations is keeping the reaction center chlorophyll (P700) of photosystem I in its oxidized form in excess light conditions. The oxidation of P700 is supported by dissipating excess electrons safely to O2, and we previously found that the molecular mechanism of the alternative electron sink is changed from flavodiiron proteins (FLV) to photorespiration in the evolutionary history from cyanobacteria to plants. However, the overall picture of the regulation of photosynthetic electron transport is still not clear in bryophytes, the evolutionary intermediates. Here, we investigated the physiological roles of FLV and photorespiration for P700 oxidation in the liverwort Marchantia polymorpha by using the mutants deficient in FLV (flv1) at different O2 partial pressures. The effective quantum yield of photosystem II significantly decreased at 2kPa O2 in flv1, indicating that photorespiration functions as the electron sink. Nevertheless, it was clear from the phenotype of flv1 that FLV was dominant for P700 oxidation in M. polymorpha. These data suggested that photorespiration has yet not replaced FLV in functioning for P700 oxidation in the basal land plant probably because of the lower contribution to lumen acidification, compared with FLV, as reflected in the results of electrochromic shift analysis.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anton Yu. Bykov ◽  
Diane J. Roth ◽  
Giovanni Sartorello ◽  
Jorge U. Salmón-Gamboa ◽  
Anatoly V. Zayats

Abstract Understanding and optimising the mechanisms of generation and extraction of hot carriers in plasmonic heterostructures is important for applications in new types of photodetectors, photochemistry and photocatalysis, as well as nonlinear optics. Here, we show using transient dynamic measurements that the relaxation of the excited hot-carriers in Au/Pt hetero-nanostructures is accelerated through the transfer pathway from Au, where they are generated, to Pt nanoparticles, which act as a hot-electron sink. The influence of the environment on the dynamics was also demonstrated. The time-resolved photoluminescence measurements confirm the modified hot-electron dynamics, revealing quenching of the photoluminescence signal from Au nanoparticles in the presence of Pt and an increased photoluminescence lifetime. These observations are signatures of the improved extraction efficiency of hot-carriers by the Au/Pt heterostructures. The results give insight into the time-dependent behaviour of excited compound nanoscale systems and provide a way of controlling the relaxation mechanisms involved, with important consequences for engineering nonlinear optical response and hot-carrier-assisted photochemistry.


2021 ◽  
Author(s):  
Yume Mai

Metal carbonyl clusters, such as the [Ni32C6(CO)36]6- anion, have been documented to display electron-sink phenomena. However, such large clusters suffer from inefficient yields due to their demanding and unreliable synthesis routes. To approach this obstacle, we investigated the electrochemical properties of Fe2(μ-PPh2)2(CO)6, an organometallic complex known to experience a reversible two-electron transfer process. In this work, we report a modular synthetic strategy for expanding the electron-sink capacity of molecular assemblies by installing Fe2(μ-PPh2)2(CO)6 redox mediators to arylisocyanide ligands. Specifically, the coordination of three Fe2(μ-PPh2)2(CO)6 subunits to a trifunctional arylisocyanide ligand produces an electron-sink ensemble that can accommodate six electrons, exceeding the precedent benchmark [Ni32C6(CO)36]6- anion. The redox mediators store electrons within quantized unoccupied frontier orbitals and act as individual quantum capacitors. Ultimately, we propose to modify the electrode surfaces with these redox mediators to examine the relationship between the electrode’s mesoscopic structure and its macroscopic capacitance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


2021 ◽  
Author(s):  
Archana Yadav ◽  
Jenna C Borrelli ◽  
Mostafa S. Elshahed ◽  
Noha H Youssef

Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and non-soil habitats, to examine the metabolic capabilities and ecological role of members of the family UBA6911 (group18) Acidobacteria. The analyzed genomes clustered into five distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher number of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling de-branching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, non-soil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage, but also provide interesting clues on how terrestrialization and niche adaptation drives metabolic specialization within the Acidobacteria.


Sign in / Sign up

Export Citation Format

Share Document