An evaluation of the internal dissipation factor in coupled thermoplasticity

1990 ◽  
Vol 25 (4) ◽  
pp. 395-403 ◽  
Author(s):  
S AndrzejŁużalec
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuele Ronchini ◽  
Gor Oganesyan ◽  
Marica Branchesi ◽  
Stefano Ascenzi ◽  
Maria Grazia Bernardini ◽  
...  

Abstractγ-ray bursts (GRBs) are short-lived transients releasing a large amount of energy (1051 − 1053 erg) in the keV-MeV energy range. GRBs are thought to originate from internal dissipation of the energy carried by ultra-relativistic jets launched by the remnant of a massive star’s death or a compact binary coalescence. While thousands of GRBs have been observed over the last thirty years, we still have an incomplete understanding of where and how the radiation is generated in the jet. Here we show a relation between the spectral index and the flux found by investigating the X-ray tails of bright GRB pulses via time-resolved spectral analysis. This relation is incompatible with the long standing scenario which invokes the delayed arrival of photons from high-latitude parts of the jet. While the alternative scenarios cannot be firmly excluded, the adiabatic cooling of the emitting particles is the most plausible explanation for the discovered relation, suggesting a proton-synchrotron origin of the GRB emission.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 732
Author(s):  
Abdelrahman M. Alshehawy ◽  
Diaa-Eldin A. Mansour ◽  
Mohsen Ghali ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

Condition assessment of insulating oil is crucial for the reliable long-term operation of power equipment, especially power transformers. Under thermal aging, critical degradation in oil properties, including chemical, physical, and dielectric properties, occurs due to the generation of aging byproducts. Ultraviolet-visible (UV-Vis) spectroscopy was recently proposed for the condition assessment of mineral oil. However, this absorption technique may involve all electronic states of the investigated material which typically yield a broad spectrum, and thus cannot precisely reflect the electronic structure of aged oil samples. It also cannot be implemented as an online sensor of oil degradation. In this paper, photoluminescence (PL) spectroscopy is introduced, for the first time, for effective condition assessment of insulating oil. The PL technique involves emission processes that only occur between a narrow band of electronic states that are occupied by thermalized electrons and consequently yields a spectrum that is much narrower than that of the absorption spectrum. Aged oil samples with different aging extents were prepared in the laboratory using accelerated aging tests at 120 °C, under which 1 day of laboratory aging is equivalent to approximately 1 year of aging in the field. These aged samples were then tested using PL spectroscopy with a wavelength ranging from 150 nm to 1500 nm. Two main parameters were evaluated for quantitative analysis of PL spectra: The full width at half-maximum and the enclosed area under the PL spectra. These parameters were correlated to the aging extent. In conjunction with PL spectroscopy, the aged oil samples were tested for the dielectric dissipation factor as an indication of the number of aging byproducts. Interestingly, we find a correlation between the PL spectra and the dielectric dissipation factor. The results of PL spectroscopy were compared to those of UV-Vis spectroscopy for the same samples and the parameters extracted from PL spectra were compared to the aging b-products extracted from UV-Vis spectra. Finally, the corresponding physical mechanisms were discussed considering the obtained results and the spectral shift for each spectrum. It was proved that PL spectroscopy is a promising technique for the condition assessment of insulating oil when compared to conventional transformer oil assessment measuring techniques and even to other optical absorption techniques.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1886
Author(s):  
Yan Zhang ◽  
Bo-han Wu ◽  
Han-li Wang ◽  
Hao Wu ◽  
Yuan-cheng An ◽  
...  

Optically transparent polyimide (PI) films with good dielectric properties and long-term sustainability in atomic-oxygen (AO) environments have been highly desired as antenna substrates in low earth orbit (LEO) aerospace applications. However, PI substrates with low dielectric constant (low-Dk), low dielectric dissipation factor (low-Df) and high AO resistance have rarely been reported due to the difficulties in achieving both high AO survivability and good dielectric parameters simultaneously. In the present work, an intrinsically low-Dk and low-Df optically transparent PI film matrix, poly[4,4′-(hexafluoroisopropylidene)diphthalic anhydride-co-2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane] (6FPI) was combined with a nanocage trisilanolphenyl polyhedral oligomeric silsesquioxane (TSP-POSS) additive in order to afford novel organic–inorganic nanocomposite films with enhanced AO-resistant properties and reduced dielectric parameters. The derived 6FPI/POSS films exhibited the Dk and Df values as low as 2.52 and 0.006 at the frequency of 1 MHz, respectively. Meanwhile, the composite films showed good AO resistance with the erosion yield as low as 4.0 × 10−25 cm3/atom at the exposure flux of 4.02 × 1020 atom/cm2, which decreased by nearly one order of magnitude compared with the value of 3.0 × 10−24 cm3/atom of the standard PI-ref Kapton® film.


2009 ◽  
Vol 94 (15) ◽  
pp. 152110 ◽  
Author(s):  
O. Bierwagen ◽  
T. Nagata ◽  
T. Ive ◽  
C. G. Van de Walle ◽  
J. S. Speck

Author(s):  
J. Schurr ◽  
C.-C. Kalmbach ◽  
M. Kruskopf ◽  
A. Muller ◽  
K. Pierz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document