Effect of T-Stress on mode I crack growth resistance in a ductile solid

1994 ◽  
Vol 31 (6) ◽  
pp. 823-833 ◽  
Author(s):  
V. Tvergaard ◽  
J.W. Hutchinson
2020 ◽  
pp. 1-19
Author(s):  
Idoia Gaztelumendi ◽  
H. Villaverde ◽  
B. Pérez ◽  
M. Chapartegui ◽  
S. Flórez ◽  
...  

2004 ◽  
Vol 53 (8) ◽  
pp. 894-899 ◽  
Author(s):  
Kazushi SATO ◽  
Toshiyuki HASHIDA
Keyword(s):  
Mode I ◽  

Author(s):  
Frank Abdi ◽  
Saber DorMohammadi ◽  
Jalees Ahmad ◽  
Cody Godines ◽  
Gregory N. Morscher ◽  
...  

ASTM test standards for CMC’s Crack Growth Resistance (CGR) may exhibit a zig-zag (wavy) crack path pattern, and fiber bridging. The experimental parameters that may contribute to the difficulty can be summarized as: specimen width and thickness, interface coating thickness, mixed mode failure evolution, and interlaminar defects. Modes I crack growth resistances, GI were analytically determined at ambient temperature using wedge test, a modified double cantilever beam (DCB). Several Finite Element (FE) based Multi-scale modeling potential techniques were investigated: a) Multi-scale progressive failure analysis (MS-PFA); b) Virtual Crack Closure Technique (VCCT). Advantages and disadvantages of each were identified. The final modeling algorithm recommended was an integrated damage and fracture evolution methodology using combined MS-PFA and VCCT. The material tested in this study was a slurry-cast melt-infiltrated SiC/SiC composite with Tyranno ZMI fibers (Ube Industries, Kyoto, Japan) and a BN interphase. The fiber architecture consisted of eight plies of balanced 2-D woven five-harness satin. The total fiber volume fraction was about 30% with half of the fibers in the 0° direction and half in the 90° direction. All specimens had a nominal thickness of 4 mm. An alumina wedge with 18° head angle (2α) was used. In this method, a splitting force is created by inserting a vertically-moving wedge in a notch causing the arms to separate and forcing an interlaminar crack at the sharpest end of the notch The MS-PFA numerical model predicted the damage and fracture evolution and utilized the GENOA UMAT (User Material Subroutine) for Damage and FEM (Finite Element Model) stress intensity and LEFM (Linear elastic Fracture Model), Cohesive Model for Fracture. The analysis results (Fracture energy vs. crack length, Fracture energy vs. load, Fracture energy vs. crack opening displacement) matched the Mode I coupon tests and revealed the following key findings. Mode I-Wedge specimen exhibits: 1) failure mode is due to interlaminar tension (ILT) only in the interface section and a zig-zag pattern observed; 2) VCCT crack growth resistance is well matched to the test data; and 3) failure mode is a mixed mode behavior of Interlaminar tension (ILT) to interlaminar shear (ILS). The final Wedge test specimen configuration optimization includes the sensitivity of design parameters to CGR: a) wedge contact coefficient of friction; b) lever arms thickness, and c) inclined head angle, distance between the initial crack and wedge tip.


2006 ◽  
Vol 54 (19) ◽  
pp. 5115-5122 ◽  
Author(s):  
Yasuhide Shindo ◽  
Fumio Narita ◽  
Katsumi Horiguchi ◽  
Tetsu Komatsu

Author(s):  
Frank Abdi ◽  
Jalees Ahmad ◽  
Saber DorMohammadi ◽  
Cody Godines ◽  
Stephen Gonczy ◽  
...  

Ceramic matrix composite (CMC) materials are targeted for high temperature application in aircraft and power turbines, because of their low density and high-temperature thermo-mechanical properties, compared to conventional nickel super alloys. New test methods are needed for the assessment of the effects of delamination cracks on the structural integrity and life of CMC components. The ASTM C28 Fracture Toughness (Crack Growth Resistance – CGR) Working Group has drafted a standard test method for the “Mode I Interlaminar Fracture Tougness (GIc – Crack Growth Resistance) of Fiber-Reinforced Ceramic Matrix Composites (CMC) by Wedge Loading of a Double Cantilever Beam at Ambient Temperatures” The wedge loading method was developed to avoid the problems of high temperature bonding of loading blocks and hinges. The ASTM test standard details the scope, use, and application of the test method, interferences, test equipment, specimen geometry and preparation, test procedures, data interpretation and calculation, and reporting requirements for the new CMC CGR test method.


Sign in / Sign up

Export Citation Format

Share Document