Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
Latest Publications


TOTAL DOCUMENTS

78
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851128

Author(s):  
Neda Djordjevic

A combustion kinetics course offered as an elective for master students of mechanical engineering and transport systems can have quite a heterogeneous group of participating students with respect to their foreknowledge of organic chemistry, thermochemistry and basics of combustion. To deal with this challenge a mobile quiz application in form of a multiple choice questions with extensive explanations have been employed in order to motivate and facilitate needs-oriented self-learning. A survey showed that students felt strongly that the mobile app affected their learning positively, helped them to consolidate their knowledge during the semester and also to test it during the preparation for the oral exam. The students also reported being additionally motivated by being able to use a smartphone to enhance learning, given that such tools are presently still scarce. They perceived the technology-assisted learning enhancement through the app as innovative and very useful.


Author(s):  
Masahiro Kurosaki ◽  
Minoru Sasamoto ◽  
Kentaro Asaka ◽  
Keiko Nakamura ◽  
Daiki Kakiuchi

This paper presents an efficient numerical integration method for a volume dynamics model in gas turbine engine transient simulations. It is a modified implicit Euler method that allows a time increment that would not be stable with the explicit Euler method. The Jacobian matrix of a nonlinear engine model is evaluated along the steady state engine operation line and scheduled as a function of the corrected shaft speed in advance, eliminating the necessity of computing during the simulation. The proposed method was applied to transient simulations of a compressor rig test model composed of a compressor, a nozzle with variable geometry and a volume placed between them. The eigenvalues of the simplified volume dynamics were analytically derived. It is shown that they are functions of the characteristic time of the volume defined by mass present in the volume divided by mass flow rate flowing into and out of the volume and dimensionless influence coefficients of nearby components.


Author(s):  
Megan Walker ◽  
Xiao Huang

In this study, single crystal superalloy René N5 was exposed in air at 1150 °C for up to 16 hours to evaluate the alloy’s short-term oxidation behaviour and the potential for developing a no-bond coat TBC system. The results showed that after 1 hour of exposure, a three layered oxide developed on the surface, consisting of spinel, Ta-containing oxide and alumina just above the substrate. After 4 hours of exposure, oxide spallation occurred; this became more pronounced after 16 hours. The oxide spallation took place between the top spinel layer and alumina layer, where Ta-rich oxide was more abundant. All samples tested for 0.5, 1, 2, 4 and 16 hours developed alumina near the substrate while the occurrence of NiO, spinel and Ta-oxides varied, depending upon the exposure time.


Author(s):  
Moritz Lipperheide ◽  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Martin Gassner ◽  
Stefano Bernero

Reliable engine and emission models allow for an online monitoring of commercial gas turbine operation and help the plant operator and the original equipment manufacturer (OEM) to ensure emission compliance of the aging engine. However, model development and validation require fine-tuning on the particular engines, which may differ in a fleet of a single design type by production, assembly and aging status. For this purpose, Artificial Neural Networks (ANN) offer a good and fast alternative to traditional physically-based engine modeling, because the model creation and adaption is merely an automatized process in commercially available software environments. However, ANN performance depends strongly on the availability of suitable data and a-priori data processing. The present work investigates the impact of specific engine information from the OEM’s design tools on ANN performance. As an alternative to a strictly data-based benchmark approach, engine characteristics were incorporated into ANNs by a pre-processing of the raw measurements with a simplified engine model. The resulting ‘virtual’ measurements, i.e. hot gas temperatures, then served as inputs to ANN training and application during long-term gas turbine operation. When processed input parameters were used for ANNs, overall long-term NOx prediction improved by 55%, and CO prediction by 16% in terms of RMSE, yielding comparable overall RMSE values to the physically-based model.


Author(s):  
Kenro Obuchi ◽  
Fumiaki Watanabe ◽  
Hiroshi Kuroki ◽  
Hiroyuki Yagi ◽  
Kazuyoshi Arai

Ceramic matrix composites (CMCs) have lower density and a higher service temperature limit than nickel based alloys which have been used for turbine components of aircraft engines. These properties of CMCs have the potential to reduce the weight of turbine components and improve turbine thermal efficiency with a higher turbine inlet temperature (TIT). One of the technical issues of the CMC turbine vane is a relatively lower impact resistance than nickel based alloy turbine vanes. There are various previous works about impact resistance of CMCs, but there is little work that assumed actual engine conditions. The objective of this work was to verify the resistance of SiC/SiC CMC turbine vane to the impact phenomena that occur in the actual aircraft engine. The field damage survey was conducted on actual metal turbine vanes of commercial engines overhauled in IHI. The survey made it clear that the typical damage was less-than-0.127-mm-dent at the leading edge. In addition, the dropped weight impact test using the actual turbine airfoil which is made from a nickel based alloy was conducted at ambient temperature. The amount of energy required to make the dent of a certain size that was observed in actual metal turbine vanes was estimated. Then, the dropped weight impact test using the CMC test piece with a leading edge shape was conducted at the impact energy estimated by the metal turbine airfoil. The results showed that the failure mode of the CMC test piece was local damage with dents of a certain size and not a catastrophic failure mode. From this work, the damage to be assumed on CMC vane in actual aircraft engines was identified. As a future task, the effect of the damage to the fatigue capability of CMC turbine vanes needs to be investigated.


Author(s):  
Alexandre Gontcharov ◽  
Yuan Tian ◽  
Paul Lowden ◽  
Mathieu Brochu

The microstructure and mechanical properties of materials produced by Wide Gap Brazing (WGB) and Laser Beam (LBW) cladding with different blends of Mar M247 and Amdry DF-3 brazing powders were studied. It was shown that LBW Mar M247 based materials comprised of 0.6 to 1 wt. % B were weldable. The weld properties were superior to WGB deposits with the same bulk chemical composition, due to the formation of a dendritic structure typical for welded joints, and the precipitation of cuboidal borides of Cr, Mo, and W in the ductile Ni-Cr based matrix. Both materials were found to have useful properties for 3D additive manufacturing (AM) and repair components manufactured from high gamma prime precipitation hardened superalloys.


Author(s):  
Michael J. Presby ◽  
Nesredin Kedir ◽  
Luis J. Sanchez ◽  
D. Calvin Faucett ◽  
Sung R. Choi ◽  
...  

The life-limiting behavior of an N720/alumina oxide/oxide ceramic matrix composite (CMC) was assessed in tension in air at 1200°C for unimpacted and impacted specimens. CMC targets were subjected to ballistic impact at ambient temperature with an impact velocity of 250 m/s under a full support configuration. Subsequent post-impact ultimate tensile strength was determined as a function of test rate in order to determine the susceptibility to delayed failure, or slow crack growth (SCG). Unimpacted and impacted specimens exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. Damage was characterized using x-ray computed tomography (CT), and scanning electron microscopy (SEM). A phenomenological life prediction model was developed in order to predict life from one loading condition (constant stress-rate loading) to another (constant stress loading). The model was verified in part via a theoretical preloading analysis.


Author(s):  
Devin O. O’Dowd ◽  
Aaron R. Byerley

This paper presents a practical approach to designing a gas turbine nozzle with the help of the Aircraft Engine Design textbook as well as the software program Nozzle, a subprogram within the Aircraft Engine Design System Analysis Software suite AEDsys. The current textbook and software allow for a variable wetted length of the converging and diverging nozzle sections. Critical feedback from industry experts has inspired an attempt to design a nozzle with fixed wetted material lengths. This paper is written to augment classroom treatment, but will also support others who use the Aircraft Engine Design text and software for a preliminary engine design capstone. This approach is further guided by the actual scaling of the Pratt & Whitney F100 variable geometry converging-diverging nozzle, where wetted lengths are fixed. The chief goal is to equip students at the United States Air Force Academy with a refined approach that is more realistic of a manufactured nozzle design, producing a graphical representation of a nozzle schedule at different speed and altitude flight conditions, both with and without afterburner.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


Author(s):  
N. Kedir ◽  
C. Gong ◽  
L. Sanchez ◽  
M. J. Presby ◽  
S. Kane ◽  
...  

Erosion behavior of a large number of gas-turbine grade ceramic matrix composites (CMCs) was assessed using fine to medium grain garnet erodents at velocities of 200 and 300 m/s at ambient temperature. The CMCs used in the current work were comprised of nine different SiC/SiCs, one SiC/C, one C/SiC, one SiC/MAS, and one oxide/oxide. Erosion damage was quantified with respect to erosion rate and the damage morphology was assessed via SEM and optical microscopy in conjunction with 3-D image mapping. The CMCs response to erosion appeared to be very complicated due to their architectural complexity, multiple material constituents, and presence of pores. Effects of architecture, material constituents, density, matrix hardness, and elastic modulus of the CMCs were taken into account and correlated to overall erosion behavior. The erosion of monolithic ceramics such as silicon carbide and silicon nitrides was also examined to gain a better understanding of the governing damage mechanisms for the CMC material systems used in this work.


Sign in / Sign up

Export Citation Format

Share Document