metallic foams
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 73)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
pp. 153-175
Author(s):  
Nuray Beköz Üllen ◽  
Gizem Karabulut

Lightweight materials were needed in many different areas, especially in order to reduce the required energy in areas such as automotive and aerospace industries. Metallic foams attract attention in lightweight material applications due to their unique properties. The pores in its structure provide advantages in many applications, both structural and functional by promising both ultra-lightweight construction, energy absorption, and damping insulation. Production techniques of metallic foams can generally be classified as liquid, solid, gas, and ionic state production according to the physical state of the metal at the beginning of the process. The production technique should be chosen according to the usage area and desired properties of the metallic foam and the suitability in terms of cost and sustainability of production. For this reason, the details of the production techniques should be known and the products that can be obtained and their properties should be understood. In this respect, this chapter emphasizes the production methods from past to present.


2022 ◽  
pp. 339-362
Author(s):  
Sefa Celik ◽  
Nuray Bekoz Ullen ◽  
Sevim Akyuz ◽  
Gizem Karabulut ◽  
Aysen E. Ozel

Lightweight materials such as metallic foams possess good mechanical, chemical, and physical properties, which make them suitable for a wide range of functional and structural applications. Metal foams have recently gained substantial interest in both industry and academia due to their low cost, thermal conductivity, high working temperature, vibration damping, specific mechanical properties, energy absorption, and heat resistance. The use of metal foams on a large scale and successful applications depend on a detailed understanding of their characteristic properties. Metallic foams are characterized by the morphology of the porous cells (size and shape, open or closed, macro and micro), pore topology, relative density, properties of the pore wall, and the degree of anisotropy. This contribution focuses on x-ray diffraction, Fourier transform infrared (FT-IR), and Raman spectroscopic applications used for the characterization of metal foam, and also a brief of the most important applications, including a significant number of examples given.


Author(s):  
Anna Dmitruk ◽  
Krzysztof Naplocha ◽  
Joanna Pach ◽  
Dariusz Pyka ◽  
Grzegorz Ziółkowski ◽  
...  

Author(s):  
J. Pinot ◽  
R. Botrel ◽  
F. Durut ◽  
L. Reverdy ◽  
L. Pescayre ◽  
...  

The aim of our work is to understand the mechanism governing the growth of metallic foams synthetized by plasma electrolysis deposition. This paper reports the influence of the applied voltage on the morphology and microstructure of copper and gold foams. The evolution of strands morphology and size is investigated by field emission scanning electronic microscopy (FE-SEM). The role of the voltage in the growth of metallic foams is then discussed. Finally, the crystalline structure of the strands is determined by transmission electronic microscopy (TEM) and selected area electron diffraction.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6989
Author(s):  
Ivana Kroupová ◽  
Martina Gawronová ◽  
Petr Lichý ◽  
Václav Merta ◽  
Filip Radkovský ◽  
...  

The aim of this paper is to summarize the possibilities of foundry methods for the production of metallic foams. At present, there are a number of production technologies for this interesting material, to which increasing attention has been paid in recent years. What is unique about metallic foams is the combination of their physical and mechanical properties. As part of our research, we designed and verified four main methods of metallic foam production by the foundry technology, whose products are metallic foam castings with regular and irregular arrangements of internal cavities. All these methods use materials and processes commonly used in conventional foundry technologies. The main idea of the research is to highlight such technologies for the production of metallic foams that could be provided by manufacturing companies without the need to introduce changes in production. Moreover, foundry methods for the production of metallic foams have the unique advantage of being able to produce even complex shaped parts and can thus be competitive compared to today's established technologies, the output of which is usually only a semi-finished product for further processing. This fact was the main motivation for the research.


Author(s):  
Jun Wei Chua ◽  
Xinwei Li ◽  
Tao Li ◽  
Beng Wah Chua ◽  
Xiang Yu ◽  
...  

Author(s):  
Anna Dmitruk ◽  
Krzysztof Naplocha ◽  
Joanna Pach ◽  
Dariusz Pyka ◽  
Grzegorz Ziółkowski ◽  
...  

AbstractIn recent years, hybrid composite materials are of increasing interest during the search for new materials to be used as ballistic barriers (shields) and kinetic energy absorbers. The main objective of this study is to test the energy absorption capacity of Zn-Al alloys filled with various polymer materials (epoxy resin, polyurethane resin and silicone). The ballistic resistance of modern hybrid materials to direct firing of a 5.56 × 45 mm SS109 projectile and during quasi-static piercing test is examined. Next, a numerical simulation in the ABAQUS environment is performed. In order to accurately reproduce the foam structure, a computed microtomography (CT) system is used. In the simulation of deformations of viscoplastic bodies, the Lagrange and Smoothed Particle Hydrodynamic (SPH) methods are applied. The obtained results from numerical analyses are verified with experimental results. Metallic foams are proven to have only a remote influence on the impact load, while, when filled with polyurethane resin, they show resistance to the overshoot. Performed simulation supports the detailed analysis of the impact energy dissipation for each of the samples.


Sign in / Sign up

Export Citation Format

Share Document