scholarly journals Approximation by certain subspaces in the banach space of continuous vector-valued functions

1979 ◽  
Vol 27 (3) ◽  
pp. 254-270 ◽  
Author(s):  
Dan Amir ◽  
Frakk Deutsch
1991 ◽  
Vol 33 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Paulette Saab ◽  
Brenda Smith

Let Ω: be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of continuous E-valued functions on Ω under supnorm. It is well known [3, p. 182] that if F is a Banach space then any bounded linear operator T:C(Ω, E)→ F has a finitely additive vector measure G defined on the σ-field of Borel subsets of Ω with values in the space ℒ(E, F**) of bounded linear operators from E to the second dual F** of F. The measure G is said to represent T. The purpose of this note is to study the interplay between certain properties of the operator T and properties of the representing measure G. Precisely, one of our goals is to study when one can characterize nuclear operators in terms of their representing measures. This is of course motivated by a well-known theorem of L. Schwartz [5] (see also [3, p. 173]) concerning nuclear operators on spaces C(Ω) of continuous scalar-valued functions. The study of nuclear operators on spaces C(Ω, E) of continuous vector-valued functions was initiated in [1], where the author extended Schwartz's result in case E* has the Radon-Nikodym property. In this paper, we will show that the condition on E* to have the Radon-Nikodym property is necessary to have a Schwartz's type theorem. This leads to a new characterization of dual spaces E* with the Radon-Nikodym property. In [2], it was shown that if T:C(Ω, E)→ F is nuclear than its representing measure G takes its values in the space (E, F) of nuclear operators from E to F. One of the results of this paper is that if T:C(Ω, E)→ F is nuclear then its representing measure G is countably additive and of bounded variation as a vector measure taking its values in (E, F) equipped with the nuclear norm. Finally, we show by easy examples that the above mentioned conditions on the representing measure G do not characterize nuclear operators on C(Ω, E) spaces, and we also look at cases where nuclear operators are indeed characterized by the above two conditions. For all undefined notions and terminologies, we refer the reader to [3].


2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .


1988 ◽  
Vol 31 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Michael Cambern ◽  
Peter Greim

AbstractA well known result due to Dixmier and Grothendieck for spaces of continuous scalar-valued functions C(X), X compact Hausdorff, is that C(X) is a Banach dual if, and only if, Xis hyperstonean. Moreover, for hyperstonean X, the predual of C(X) is strongly unique. Here we obtain a formulation of this result for spaces of continuous vector-valued functions. It is shown that if E is a Hilbert space and C(X, (E, σ *) ) denotes the space of continuous functions on X to E when E is provided with its weak * ( = weak) topology, then C(X, (E, σ *) ) is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of C(X, (E, σ *) ) is strongly unique.


1975 ◽  
Vol 16 (1) ◽  
pp. 57-60 ◽  
Author(s):  
P. E. Kopp

This note contains extensions of the Abelian ergodic theorems in [3] and [6] to functions which take their values in a Banach space. The results are based on an adaptation of Rota's maximal ergodic theorem for Abel limits [8]. Convergence theorems for continuous parameter semigroups are deduced by the approximation technique developed in [3], [6]. A direct application of the resolvent equation also enables us to deduce a convergence theorem for pseudo-resolvents.


Sign in / Sign up

Export Citation Format

Share Document