Spaces of Continuous Vector Functions as Duals

1988 ◽  
Vol 31 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Michael Cambern ◽  
Peter Greim

AbstractA well known result due to Dixmier and Grothendieck for spaces of continuous scalar-valued functions C(X), X compact Hausdorff, is that C(X) is a Banach dual if, and only if, Xis hyperstonean. Moreover, for hyperstonean X, the predual of C(X) is strongly unique. Here we obtain a formulation of this result for spaces of continuous vector-valued functions. It is shown that if E is a Hilbert space and C(X, (E, σ *) ) denotes the space of continuous functions on X to E when E is provided with its weak * ( = weak) topology, then C(X, (E, σ *) ) is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of C(X, (E, σ *) ) is strongly unique.

1989 ◽  
Vol 32 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Michael Cambern ◽  
Peter Greim

AbstractA. Grothendieck has shown that if the space C(X) is a Banach dual then X is hyperstonean; moreover, the predual of C(X) is strongly unique. In this article we give a vector analogue of Grothendieck's result. We show that if E* is a reflexive Banach space and C(X, (E*, σ*)) denotes the space of continuous functions on X to E* when E* is provided with its weak* (= weak) topology then the full content of Grothendieck's theorem for C(X) can be established for C(X,(E*,σ*)). This improves a result previously obtained for the case in which E* is Hilbert space.


2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1979 ◽  
Vol 31 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Seki A. Choo

In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.


Sign in / Sign up

Export Citation Format

Share Document