scholarly journals s-Numbers of integral operators with Hölder continuous kernels over metric compacta

1988 ◽  
Vol 81 (1) ◽  
pp. 54-73 ◽  
Author(s):  
Bernd Carl ◽  
Stefan Heinrich ◽  
Thomas Kühn
2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


2018 ◽  
Vol 16 (06) ◽  
pp. 875-893
Author(s):  
Elena Cordero ◽  
Fabio Nicola ◽  
Eva Primo

We study continuity properties in Lebesgue spaces for a class of Fourier integral operators arising in the study of the Boltzmann equation. The phase has a Hölder-type singularity at the origin. We prove boundedness in [Formula: see text] with a precise loss of decay depending on the Hölder exponent, and we show by counterexamples that a loss occurs even in the case of smooth phases. The results can be seen as a quantitative version of the Beurling–Helson theorem for changes of variables with a Hölder singularity at the origin. The continuity in [Formula: see text] is studied as well by providing sufficient conditions and relevant counterexamples. The proofs rely on techniques from time-frequency analysis.


2018 ◽  
Vol 60 (3) ◽  
pp. 610-629
Author(s):  
G. A. Karapetyan ◽  
H. A. Petrosyan
Keyword(s):  

Author(s):  
Brian Street

This chapter turns to a general theory which generalizes and unifies all of the examples in the preceding chapters. A main issue is that the first definition from the trichotomy does not generalize to the multi-parameter situation. To deal with this, strengthened cancellation conditions are introduced. This is done in two different ways, resulting in four total definitions for singular integral operators (the first two use the strengthened cancellation conditions, while the later two are generalizations of the later two parts of the trichotomy). Thus, we obtain four classes of singular integral operators, denoted by A1, A2, A3, and A4. The main theorem of the chapter is A1 = A2 = A3 = A4; i.e., all four of these definitions are equivalent. This leads to many nice properties of these singular integral operators.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


Author(s):  
Philip Isett

This chapter deals with the gluing of solutions and the relevant theorem (Theorem 12.1), which states the condition for a Hölder continuous solution to exist. By taking a Galilean transformation if necessary, the solution can be assumed to have zero total momentum. The cut off velocity and pressure form a smooth solution to the Euler-Reynolds equations with compact support when coupled to a smooth stress tensor. The proof of Theorem (12.1) proceeds by iterating Lemma (10.1) just as in the proof of Theorem (10.1). Applying another Galilean transformation to return to the original frame of reference, the theorem is obtained.


Sign in / Sign up

Export Citation Format

Share Document