Effects of large-scale mining withdrawals of ground-water (from the aquifers of the North Carolina coastal plain)

1970 ◽  
Vol 11 (4) ◽  
pp. 443
2004 ◽  
Vol 49 (3) ◽  
pp. 63-70 ◽  
Author(s):  
T.B. Spruill

Water-quality and hydrologic information were collected along ground-water flow paths from two well-drained and two poorly drained Coastal Plain settings in North Carolina to evaluate the relative effectiveness of riparian buffers in reducing discharge of nitrate to streams. At one well-drained site with a 100 m buffer, little or no effect was detected on surface-water quality by discharging ground water because extensive woody vegetation in the buffer was able to take up not only most nitrate, but also most ground water before discharging to the stream during the growing season (March-October). At the second well-drained site, ground water discharging to the stream from the side with a buffer contained about 2 mg/L of nitrate-nitrogen after passing through the bed of the stream compared to 6 mg/L in ground water discharging from the side with no buffer. In the poorly drained settings, nitrate in ground water decreased from about 6 mg/L in the recharge area to less than 0.02 mg/L downgradient from the riparian buffer. Ground water discharging from the side with no buffer contained 0.83 mg/L. Riparian buffers appear effective in reducing nitrate in ground water discharging to Coastal Plain streams.


2013 ◽  
Vol 28 (1) ◽  
pp. 175-193 ◽  
Author(s):  
Joseph B. Pollina ◽  
Brian A. Colle ◽  
Joseph J. Charney

Abstract This study presents a spatial and temporal climatology of major wildfire events, defined as >100 acres burned (>40.47 ha, where 1 ha = 2.47 acre), in the northeast United States from 1999 to 2009 and the meteorological conditions associated with these events. The northeast United States is divided into two regions: region 1 is centered over the higher terrain of the northeast United States and region 2 is primarily over the coastal plain. About 59% of all wildfire events in these two regions occur in April and May, with ~76% in region 1 and ~53% in region 2. There is large interannual variability in wildfire frequency, with some years having 4–5 times more fire events than other years. The synoptic flow patterns associated with northeast United States wildfires are classified using the North American Regional Reanalysis. The most common synoptic pattern for region 1 is a surface high pressure system centered over the northern Appalachians, which occurred in approximately 46% of all events. For region 2, the prehigh anticyclone type extending from southeast Canada and the Great Lakes to the northeast United States is the most common pattern, occurring in about 46% of all events. A trajectory analysis highlights the influence of large-scale subsidence and decreasing relative humidity during the events, with the prehigh pattern showing the strongest subsidence and downslope drying in the lee of the Appalachians.


2017 ◽  
Vol 143 (9) ◽  
pp. 05017003 ◽  
Author(s):  
Adrienne R. Cizek ◽  
William F. Hunt ◽  
Ryan J. Winston ◽  
Matthew S. Lauffer

Sign in / Sign up

Export Citation Format

Share Document