River flow forecasting. Part 2. Algebraic development of linear modelling techniques

1992 ◽  
Vol 133 (1-2) ◽  
pp. 17-40 ◽  
Author(s):  
R.K. Kachroo ◽  
G.C. Liang
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3049
Author(s):  
Chiara Belvederesi ◽  
John Albino Dominic ◽  
Quazi K. Hassan ◽  
Anil Gupta ◽  
Gopal Achari

Catchments located in cold weather regions are highly influenced by the natural seasonality that dictates all hydrological processes. This represents a challenge in the development of river flow forecasting models, which often require complex software that use multiple explanatory variables and a large amount of data to forecast such seasonality. The Athabasca River Basin (ARB) in Alberta, Canada, receives no or very little rainfall and snowmelt during the winter and an abundant rainfall–runoff and snowmelt during the spring/summer. Using the ARB as a case study, this paper proposes a novel simplistic method for short-term (i.e., 6 days) river flow forecasting in cold regions and compares existing hydrological modelling techniques to demonstrate that it is possible to achieve a good level of accuracy using simple modelling. In particular, the performance of a regression model (RM), base difference model (BDM), and the newly developed flow difference model (FDM) were evaluated and compared. The results showed that the FDM could accurately forecast river flow (ENS = 0.95) using limited data inputs and calibration parameters. Moreover, the newly proposed FDM had similar performance to artificial intelligence (AI) techniques, demonstrating the capability of simplistic methods to forecast river flow while bypassing the fundamental processes that govern the natural annual river cycle.


1999 ◽  
Vol 10 (2) ◽  
pp. 402-409 ◽  
Author(s):  
A.F. Atiya ◽  
S.M. El-Shoura ◽  
S.I. Shaheen ◽  
M.S. El-Sherif

2007 ◽  
Vol 4 (3) ◽  
pp. 1369-1406 ◽  
Author(s):  
M. Firat

Abstract. The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and the Seyhan catchment, located in the south of Turkey, is chosen as a case study. Totally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe (1818) on Seyhan River between the years 1986 and 2000. The data set are divided into three subgroups, training, testing and verification. The training and testing data set include totally 5114 daily river flow data and the number of verification data points is 731. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN methods. The results of ANFIS, GRNN and FFNN models for both training and testing are evaluated and the best fit forecasting model structure and method is determined according to criteria of performance evaluation. The best fit model is also trained and tested by traditional statistical methods and the performances of all models are compared in order to get more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified by verification data set including 731 daily river flow data at the time period 1998–2000 and the results of models are compared. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily River flow forecasting.


Sign in / Sign up

Export Citation Format

Share Document