athabasca river
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 0)

2022 ◽  
Vol 39 ◽  
pp. 100981
Author(s):  
Daniel L. Peters ◽  
Dillon Watt ◽  
Kevin Devito ◽  
Wendy A. Monk ◽  
Rajesh R. Shrestha ◽  
...  


2021 ◽  
Vol 36 ◽  
pp. 100847
Author(s):  
Ebrahim Ghaderpour ◽  
Tijana Vujadinovic ◽  
Quazi K. Hassan


Author(s):  
Jordyn Bergsveinson ◽  
John Lawrence ◽  
Alixandra Schebel ◽  
Jessica Wasserscheid ◽  
Julie Roy ◽  
...  

Microbial communities are an important aspect of overall riverine ecology; however, appreciation of the effects of anthropogenic activities on unique riverine microbial niches, and how the collection of these samples affects the observed diversity and community profile is lacking. We analyzed prokaryotic and eukaryotic communities from surface water, biofilm, suspended load niches along a gradient of oil sands-related contamination in the Athabasca River (Alberta, Canada), with suspended load or particle-associated communities collected either via Kenney Sampler or centrifugation manifold. At the level of phyla, different niche communities were highly similar to one another and across locations. However, there were significant differences in the abundance of specific genera amongst different niches and across sampling locations. A generalized linear model revealed that use of the Kenney Sampler resulted in more diverse bacterial and eukaryotic suspended load community than centrifugal collection, though “suspended load” communities collected by any means remained stably diverse across locations. Though there was influence of water quality parameters on community composition, all sampled sites support diverse bacterial and eukaryotic communities regardless of the degree of contamination, highlighting the need to look beyond ecological diversity as means of assessing ecological perturbations, and consider collecting samples from multiple niche environments.



2021 ◽  
Author(s):  
John R. Post ◽  
Hillary G.M. Ward ◽  
Kyle Wilson ◽  
George L. Sterling ◽  
Ariane Cantin ◽  
...  




2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Paul Broughton

Meteoric and glacial meltwater charged groundwater, mixed with dissolved salts from Devonian sources at depth, discharged as saline springs along topographic lows of the Athabasca River Valley, which downcuts into the Cretaceous Athabasca oil sands deposit in northeast Alberta, western Canada. These Quaternary saline seeps have TDS measurements, isotope signatures and other chemical characteristics indicative of the groundwater flows coming in contact with Prairie Evaporite (M. Devonian) salt beds, 200 m below the surface. Migrations up-section of groundwater with dissolved chloride and sulphate salts occurred along salt dissolution collapse breccia zones that cross-cut Upper Devonian limestone strata. Seeps discharged along the karstic Devonian limestone paleotopography, the unconformity surface flooring the Lower Cretaceous McMurray Formation. Saline to brine springs along the Athabasca River Valley have TDS measurements that can exceed 100,000 mg/L. Quaternary salt removal was insignificant compared to the voluminous removal of the 80-130 m thick salt section for 1000s km2 during the Early Cretaceous configuration of the Devonian paleotopography, which partially controlled depositional patterns of the overlying McMurray Formation, principal host rock of the Athabasca oil sands. Little is known of the storage or disposition of voluminous brines that would have resulted from this regional-scale removal of the salt beds below the Athabasca deposit during the Cordilleran configuration of the foreland Alberta Basin. Holocene dissolution trends and discharges at the surface as saline springs are proposed as a modern analogue for voluminous Early Cretaceous brine seeps to the surface along salt dissolution collapse breccia zones, concurrent with deposition of the McMurray Formation. This model links several characteristics of the McMurray Formation as responses to Aptian brine seeps to the surface. These include: (1) the emplacement of a drainage-line silcrete along the margins of the Assiniboia PaleoValley, now partially exhumed by the Athabasca River Valley, (2) distribution of brackish-water burrowing organisms, and (3) diagenesis of calcite-cemented sand intervals.



2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Cynthia R. Adams ◽  
Vicki S. Blazer ◽  
Jim Sherry ◽  
Robert S. Cornman ◽  
Luke R. Iwanowicz

ABSTRACT We report 26 genome sequences of the white sucker hepatitis B virus (WSHBV) from the white sucker, Catostomus commersonii. The genome length ranged from 3,541 to 3,543 bp, and nucleotide identity was 96.7% or greater across genomes. This work suggests a geographical range of this virus that minimally extends from the Athabasca River, Alberta, Canada, to the Great Lakes, USA.



2021 ◽  
Author(s):  
Sophie de Roda Husman ◽  
Joost J. van der Sanden ◽  
Stef Lhermitte ◽  
Marieke A. Eleveld

<p>River ice is a major contributor to flood risk in cold regions due to the physical impediment of flow caused by ice jamming. Although a variety of classifiers have been developed to distinguish ice types using HH or VV intensity of SAR data, mostly based on data from RADARSAT-1 and -2, these classifiers still experience problems with breakup classification, because meltwater development causes overlap in co-polarization backscatter intensities of open water and sheet ice pixels.</p><p>In this study, we develop a Random Forest classifier based on multiple features of Sentinel-1 data for three main classes generally present during breakup: rubble ice, sheet ice and open water, in a case study over the Athabasca River in Canada. For each ice stage, intensity of the VV and VH backscatter, pseudo-polarimetric decomposition parameters and Grey Level Co-occurrence Matrix texture features were computed for 70 verified sample areas. Several classifiers were developed, based on i) solely intensity features or on ii) a combination of intensity, pseudo-polarimetric and texture features and each classifier was evaluated based on Recursive Feature Elimination with Cross-Validation and pair-wise correlation of the studied features.</p><p>Results show improved classifier performance when including GLCM mean of VV intensity, and VH intensity features instead of the conventional classifier based solely on intensity. This highlights the importance of texture and intensity features when classifying river ice. GLCM mean incorporates spatial patterns of the co-polarized intensity and sensitivity to context, while VH intensity introduces cross-polarized surface and volume scattering signals, in contrast to the commonly used co-polarized intensity.</p><p>We conclude that the proposed method based on the combination of texture and intensity features is suitable for and performs well in physically complex situations such as breakup, which are hard to classify otherwise. This method has a high potential for classifying river ice operationally, also for data from other SAR missions. Since it is a generic approach, it also has potential to classify river ice along other rivers globally.  </p>



Sign in / Sign up

Export Citation Format

Share Document