Slow magic-angle rotation 13C NMR studies of solid phosphonium iodides. The interplay of dipolar, shielding, and indirect coupling tensors

1985 ◽  
Vol 62 (2) ◽  
pp. 284-297 ◽  
Author(s):  
Robin K. Harris ◽  
Kenneth J. Packer ◽  
Ann M. Thayer
1983 ◽  
Vol 56 (5) ◽  
pp. 959-970 ◽  
Author(s):  
Richard A. Komoroski

Abstract Magic angle spinning (MAS) 13C NMR is investigated as an alternative method to IR spectroscopy of solution state NMR for the characterization of the elastomeric conmponents of filled vulcanizates. Good high resolution spectra can be obtained from standard. Bloch decays (i.e., without cross polarization) using magic angle spinning and high power decoupling. Although the peak resolution is not as good as in 13C spectra of comparable solubilized or pyrolyzed materials, the MAS spectra are of sufficient quality for polymer identification in simple filled vulcanizates in most cases. The MAS spectra are usable for direct quantitative analysis of the polymeric components without priot sample workup. A known series of filled cis-BR/SBR vulcanizates ranging from 0 to 100% SBR was examined. Direct analysis yielded results with an average absolute deviation of 1.2% from the expected values. A known series of NR cis-BR-SBR compounds which had been characterized previously by IR was also studied. The direct NMR analysts gave results comparable to those of the IR method. Use of a cis-BR/SBR standard curve derived from the previous cis-BR/SBR analysis improved the results for the triblend analyses. The MAS 13C NMR method has the advantage that a potentially suspect solubilization or pyrolysis step is eliminated. In many cases, results can be obtained in several hours. Also, results should not depend on degree of cure. The NR cis-BR/SBR results show that low levels of NR (∼3 to 5%) are detectable.


2020 ◽  
Vol 63 (8) ◽  
pp. 53-57
Author(s):  
Sergey Yu. Lyrshchikov ◽  
◽  
Larisa V. Sotnikova ◽  

In this paper, the method of cross-polarization with magic angle rotation and decoupling from protons (CPMAS) 13C NMR spectroscopy obtained quantitative data on the distribution of carbon over structural fragments and calculated the degree of aromaticity (fa) of some coal samples from various Siberian deposits of a wide range of metamorphism. All the coals used in the work were characterized by standard methods (proxymate and ultimate analysis). The optimal parameters of the pulse program for recording the spectra of coals have been determined. To obtain quantitative data, the spectra were simulated. The spectrum model included from 9 to 13 components, depending on the stage of coal metamorphism. The dependences of the degree of aromaticity and the sum of oxygen-containing functional groups on the stage of coal metamorphism were constructed. The results obtained show that the structure of coals regularly changes depending on the stage of their metamorphism. The revealed relationships of the structure and properties of coals, together with the parameters of their reactivity, can ensure the safe behavior of coals in the processes of mining and processing, as well as in determining possible ways of using the studied coal samples as a valuable chemical raw material.


1989 ◽  
Vol 29 (1) ◽  
pp. 83-88 ◽  
Author(s):  
J. P. Grivet ◽  
J. Stevani ◽  
G. Hannequart ◽  
M. Durand

1999 ◽  
Vol 23 (3) ◽  
pp. 202-203
Author(s):  
Daniel A. Fletcher ◽  
Brian G. Gowenlock ◽  
Keith G. Orrell ◽  
David C. Apperley ◽  
Michael B. Hursthouse ◽  
...  

Solid-state and solution 13C NMR data for the monomers and dimers of 3- and 4-substituted nitrosobenzenes, and the crystal structure of E-(4-CIC6H4NO)2 are reported.


Sign in / Sign up

Export Citation Format

Share Document