perfused rat hearts
Recently Published Documents


TOTAL DOCUMENTS

468
(FIVE YEARS 7)

H-INDEX

46
(FIVE YEARS 3)

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Helmut Raphael Lieder ◽  
Felix Braczko ◽  
Nilgün Gedik ◽  
Merlin Stroetges ◽  
Gerd Heusch ◽  
...  

AbstractIschemic post-conditioning (iPoCo) by coronary re-occlusion/reperfusion during immediate reperfusion after prolonged myocardial ischemia reduces infarct size. Mechanical manipulation of culprit lesions, however, carries the risk of coronary microembolization which may obscure iPoCo’s cardioprotection. Pharmacological post-conditioning with exogenous triiodothyronine (T3) could serve as an alternative conditioning strategy. Similar to iPoCo, T3 may activate cardioprotective prosurvival pathways. We aimed to study T3’s impact on infarct size and its underlying signal transduction. Hearts were isolated from male Lewis rats (200–380 g), buffer-perfused and subjected to 30 min/120 min global zero-flow ischemia/reperfusion (I/R). In additional hearts, either iPoCo (2 × 30 s/30 s I/R) was performed or T3 (100–500 µg/L) infused at reperfusion. Infarct size was demarcated with triphenyl tetrazolium chloride staining and calculated as percent of ventricular mass. Infarct size was reduced with iPoCo to 16 ± 7% vs. 36 ± 4% with I/R only. The maximum infarct size reduction was observed with 300 µg/L T3 (14 ± 2%). T3 increased the phosphorylation of protein kinase B and mitogen extracellular-regulated-kinase 1/2, both key enzymes of the reperfusion injury salvage kinase (RISK) pathway. Pharmacological RISK blockade (RISK-BL) during reperfusion abrogated T3’s cardioprotection (35 ± 10%). Adult ventricular cardiomyocytes were isolated from buffer-perfused rat hearts and exposed to 30 min/5 min hypoxia/reoxygenation (H/R); reoxygenation was initiated without or with T3, respectively, and without or with RISK-BL, respectively. Maximal preservation of viability was observed with 500 µg/L T3 after H/R (27 ± 4% of all cells vs. 5 ± 3% in time-matched controls). Again, RISK-BL abrogated protection (11 ± 3%). Mitochondria were isolated at early reperfusion from buffer-perfused rat hearts without or with iPoCo or 300 µg/L T3, respectively, at reperfusion. T3 improved mitochondrial function (i.e.: increased respiration, adenosine triphosphate production, calcium retention capacity, and decreased reactive oxygen species formation) to a similar extent as iPoCo. T3 at reperfusion reduces infarct size by activation of the RISK pathway. T3’s protection is a cardiomyocyte phenomenon and targets mitochondria.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Michaela Andrä ◽  
Miriam Russ ◽  
Susanne Jauk ◽  
Mariana Lamacie ◽  
Ingrid Lang ◽  
...  

As progressive organ shortage in cardiac transplantation demands extension of donor criteria, effort is needed to optimize graft survival. Reactive oxygen and nitrogen species, generated during organ procurement, transplantation, and reperfusion, contribute to acute and late graft dysfunction. The combined application of diverse substances acting via different molecular pathways appears to be a reasonable approach to face the complex mechanism of ischemia reperfusion injury. Thus, an antioxidant solution containing α-ketoglutaric acid, 5-hydroxymethylfurfural, N-acetyl-L-methionine, and N-acetyl-selenium-L-methionine was combined with endogenous angiotensin-(1-7). Its capacity of myocardial protection was investigated in isolated Langendorff-perfused rat hearts subjected to warm and cold ischemia. The physiological cardiac parameters were assessed throughout the experiments. Effects were evaluated via determination of the oxidative stress parameters malondialdehyde and carbonyl proteins as well as immunohistochemical and ultrastructural tissue analyses. It was shown that a combination of 20% (v/v) antioxidant solution and 220 pM angiotensin-(1-7) led to the best results with a preservation of heart tissue against oxidative stress and morphological alteration. Additionally, immediate cardiac recovery (after warm ischemia) and normal physiological performance (after cold ischemia) were recorded. Overall, the results of this study indicate substantial cardioprotection of the novel combination with promising prospective for future clinical use.


Author(s):  
Balvinder S Handa ◽  
Xinyang Li ◽  
Nicoleta Baxan ◽  
Caroline H Roney ◽  
Anastasia Shchendrygina ◽  
...  

Abstract Aims Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. Methods and results Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. Conclusion The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.


2020 ◽  
Author(s):  
Ishfaq Bukhari ◽  
Osama Yousif Mohamed ◽  
Rahmathunnisa Lateef ◽  
Sabiha Fatima ◽  
Fahim Vohra ◽  
...  

Abstract Background The present study aims to investigate the protective effect of rutin against cisplatin induced toxic effects on the mechanical performance of the myocardium, histopathology, and oxidative stress in isolated perfused rat hearts. Methods Cardiotoxicity of cisplatin was assessed at three dosage levels (1, 7, and 14 mg/l) in the isolated perfused rat hearts. The toxic effect of cisplarin was assessed on left ventricular pressure (LVP), heart rate (HR), dp/dt(max), dp/dt (min), perfusion pressure, pressure-time index, contractility index and duration of diastole. Measurements were carried out one minute before perfusion of cisplatin and 60 minutes after perfusion. Results Cisplatin reduced significantly (p < 0.05) in a dose-dependent manner LVP, dp/dt(max), dp/dt(min) and pressure- time index. Perfusion of rutin trihydrate (1 µM/l), 10 minutes before administration of cisplatin and throughout the experiment significantly (p < 0.05) attenuated the detrimental effects of cisplatin on cardiac parameters. Cisplatin caused degeneration and necrosis of cardiac muscle cells, while rutin reduced these changes and restored normal heart histology. Moreover, cisplatin reduced the myocardium concentration of reduced glutathione and increased the level of malondialdehyde, whereas rutin almost reversed these changes. Conclusion Cisplatin-induced dose-dependent impairment of several parameters of cardiac function and produced histopathological alterations in isolated rat hearts. These harmful effects of cisplatin were ameliorated by rutin trihydrate. These findings suggest the potential protective effects of rutin trihydrate against cisplatin-induced cardiotoxicity.


2019 ◽  
Vol 317 (5) ◽  
pp. C910-C921 ◽  
Author(s):  
Qun Chen ◽  
Jeremy Thompson ◽  
Ying Hu ◽  
Joseph Dean ◽  
Edward J. Lesnefsky

Activation of calpain 1 (CPN1) and calpain 2 (CPN2) contributes to cardiac injury during ischemia (ISC) and reperfusion (REP). Complex I activity is decreased in heart mitochondria following ISC-REP. CPN1 and CPN2 are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and mitochondria (mit)-CPN1 and 2. Recent work shows that the complex I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We asked whether ISC-REP led to decreased complex I activity via proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2. Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes following ISC-REP. We asked whether activation of cs-CPN1 and -2 impaired mitophagy in the heart following ISC-REP. Buffer-perfused rat hearts underwent 25 min of global ISC and 30 min of REP. MDL-28170 (MDL; 10 µM) was used to inhibit CPN1 and -2. Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mitochondria (IFM) were isolated at the end of heart perfusion. Cardiac ISC-REP led to decreased complex I activity with a decrease in the content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in a decrease in cytosolic beclin-1 content, a key component of the autophagy pathway required to form autophagosomes. MDL treatment protected the contents of cytosolic beclin-1 and mitochondrial NDUFS7 in hearts following ISC-REP. These results support that activation of both cytosolic and mitochondrial calpains impairs mitochondria during cardiac ISC-REP. Mitochondria-localized calpains impair complex I via cleavage of a key subunit. Activation of cytosolic calpains contributes to mitochondrial dysfunction by impairing removal of the impaired mitochondria through depletion of a key component of the mitophagy process.


2017 ◽  
Vol 53 (3) ◽  
pp. 664-671 ◽  
Author(s):  
Hans-Henrik Kimose ◽  
Flemming Randsbæk ◽  
Thomas Decker Christensen ◽  
Guro Valen ◽  
Hans Erik Bøtker ◽  
...  

2017 ◽  
Vol 24 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Yuhichi Kuda ◽  
Toshishige Shibamoto ◽  
Wei Yang ◽  
Tao Zhang ◽  
Mamoru Tanida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document