Four-dimensional heteronuclear triple-resonance NMR of isotopically enriched proteins for sequential assignment of backbone atoms

1991 ◽  
Vol 91 (2) ◽  
pp. 422-428
Author(s):  
Lewis E Kay ◽  
Mitsuhiko Ikura ◽  
Guang Zhu ◽  
Ad Bax
2004 ◽  
Vol 18 (2) ◽  
pp. 237-249
Author(s):  
Nicholas J. Skelton ◽  
Michelle L. Schaffer ◽  
Kurt Deshayes ◽  
Tamas Blandl ◽  
Steven Runyon ◽  
...  

Insulin–like growth factor–I (IGF–I) is a central mediator of cell growth, differentiation and metabolism. Structural characterization of the protein has been hampered by a combination of internal dynamics and self–association that prevent crystallization and produce broad NMR resonances. To better characterize the functions of IGF–I, we have used phage display to identify peptides that antagonize the binding of IGF–I to its plasma binding proteins (IGFBPs) and cell–surface receptor (IGF–R). Interestingly, binding of peptide improves dramatically the quality of the NMR resonances of IGF–I, and enables the use of triple–resonance NMR methods to characterize the complexes. One such peptide, designated IGF–F1–1, has been studied in detail. In the complex, the peptide retains the same loop–helix motif seen in the free state whilst IGF–I contains three helices, as has been seen previously in low–resolution structures in the absence of ligand. The peptide binds at a hydrophobic patch between helix 1 and 3, a site identified previously by mutagenesis as a contact site for IGFBP1. Thus, antagonism of IGFBP1 binding exhibited by the peptide occurs by a simple steric occlusion mechanism. Antagonism of IGF–R binding may also be explained by a similar mechanism if receptor binding occurs by a two–site process, as has been postulated for insulin binding to its receptor. Comparisons with crystallographic structures determined for IGF–I in other complexes suggest that the region around helix 1 of IGF–I is conformationally conserved whereas the region around helix 3 adopts several different ligand–induced conformations. The ligand–induced structural variability of helix 3 appears to be a common feature across the insulin super–family. In the case of IGF–I, exchange between such conformations may be the source of the dynamic nature of free IGF–I, and likely has functional significance for the ability of IGF–I to recognize two signaling receptors and six binding proteins with high affinity.


2003 ◽  
pp. 29-52 ◽  
Author(s):  
Brian Whitehead ◽  
C. Jeremy Craven ◽  
Jonathan P. Waltho

Author(s):  
Peter L. Rinaldi ◽  
Lan Li ◽  
Dale G. Ray ◽  
Gerard S. Hatvany ◽  
Hsin-Ta Wang ◽  
...  

2000 ◽  
Vol 33 (1) ◽  
pp. 29-65 ◽  
Author(s):  
Ann E. Ferentz ◽  
Gerhard Wagner

1. Introduction 292. Landmarks in NMR of macromolecules 322.1 Protein structures and methods development 322.1.1 Sequential assignment method 322.1.2 Triple-resonance experiments 342.1.3 Structures of large proteins 362.2 Protein–nucleic acid complexes 372.3 RNA structures 382.4 Membrane-bound systems 393. NMR spectroscopy today 403.1 State-of-the-art structure determination 413.2 New methods 443.2.1 Residual dipolar couplings 443.2.2 Direct detection of hydrogen bonds 443.2.3 Spin labeling 453.2.4 Segmental labeling 463.3 Protein complexes 473.4 Mobility studies 503.5 Determination of time-dependent structures 523.6 Drug discovery 534. The future of NMR 544.1 The ease of structure determination 544.2 The ease of making recombinant protein 554.3 Post-translationally modified proteins 554.4 Approaches to large and/or membrane-bound proteins 564.5 NMR in structural genomics 564.6 Synergy of NMR and crystallography in protein structure determination 565. Conclusion 576. Acknowledgements 577. References 57Since the publication of the first complete solution structure of a protein in 1985 (Williamson et al. 1985), tremendous technological advances have brought nuclear magnetic resonance spectroscopy to the forefront of structural biology. Innovations in magnet design, electronics, pulse sequences, data analysis, and computational methods have combined to make NMR an extremely powerful technique for studying biological macromolecules at atomic resolution (Clore & Gronenborn, 1998). Most recently, new labeling and pulse techniques have been developed that push the fundamental line-width limit for resolution in NMR spectroscopy, making it possible to obtain high-field spectra with better resolution than ever before (Dötsch & Wagner, 1998). These methods are facilitating the study of systems of ever-increasing complexity and molecular weight.


Sign in / Sign up

Export Citation Format

Share Document