Effects of halothane on intracellular sodium ion activity under condition of sodium pump inhibition in dog Purkinje fibers

1991 ◽  
Vol 23 ◽  
pp. S164
Author(s):  
C LIN
1983 ◽  
Vol 244 (1) ◽  
pp. C110-C114 ◽  
Author(s):  
C. O. Lee ◽  
M. Vassalle

The actions of norepinephrine and high calcium on the electrical, mechanical, and intracellular sodium ion activities were studied in electrically driven canine cardiac Purkinje fibers under different conditions. It was found that norepinephrine and high calcium decrease intracellular sodium ion activity (aiNa). The exposure to either agent is followed by a transient decline of force that correlates with the lower aiNa. Inhibition of the Na+ -K+ pump by strophanthidin reduces or abolishes the decrease in aiNa by norepinephrine but not that by high calcium. It is concluded that norepinephrine and high calcium both decrease aiNa and thereby the contractile force but (unlike high calcium) norepinephrine acts through the stimulation of the Na+ -K+ pump.


1987 ◽  
Vol 65 (5) ◽  
pp. 954-962 ◽  
Author(s):  
Chin O. Lee ◽  
Wook B. Im ◽  
Jong K. Sonn

Recently Na+-selective microelectrodes (NaSM) have been used to measure quantitatively small changes in intracellular sodium ion activity [Formula: see text] and to determine a precise time course of comparatively rapid change in [Formula: see text]. In such studies, accurate measurement of [Formula: see text] requires the following criteria: (i) NaSM should have a fast response time and (ii) an NaSM and a conventional voltage microelectrode should measure the same membrane potential. These criteria were evaluated by measuring [Formula: see text] when membrane potential of cardiac Purkinje fibers was suddenly hyperpolarized and depolarized by changing stimulation rate. The NaSM coated with a conductive silver paint had fast response times so that rapid changes in [Formula: see text] could be reliably measured. The cardiac Purkinje fibers stimulated at a constant rate generated uniform membrane voltage and the NaSM and conventional microelectrode measured virtually the same membrane potential. This result is somewhat different from that reported under voltage-clamp condition by other investigators. The [Formula: see text] of the fibers increased as the stimulation rate was increased over the range of 0.5–3 Hz. In fibers stimulated at 1 Hz, cessation of stimulation was immediately followed by an exponential decline of [Formula: see text] with an average time constant of 53 ± 9 s (SD, n = 8), or rate constant of 0.020 ± 0.004/s. Restimulation of the fibers produced an exponential rise of [Formula: see text] with an average time constant of 65 ± 12 s (n = 8). Similar results were obtained in fibers stimulated at 2 Hz. The average rates of rise of [Formula: see text] after the onset of stimulations at 1 and 2 Hz were 1.0 and 1.5 mM/min, equivalent to increments in net sodium influx of 13.2 and 19.8 pmol∙cm−2∙s−1, respectively. The average maximum rate of [Formula: see text] rise produced by the application of 10−5 M strophanthidin to the fibers stimulated at 1 Hz was 1.3 ± 0.5 mM/min, equivalent to a net sodium influx of 17.2 pmol∙cm−2∙s−1.


2009 ◽  
Vol 96 (3) ◽  
pp. 623a-624a
Author(s):  
Kirsten Hoyer ◽  
James Balschi ◽  
John Shryock ◽  
Luiz Belardinelli ◽  
Joanne S. Ingwall

1984 ◽  
Vol 83 (2) ◽  
pp. 287-307 ◽  
Author(s):  
M Vassalle ◽  
C O Lee

The role of sodium and calcium ions in strophanthidin inotropy was studied by measuring simultaneously the electrical, mechanical, and intracellular sodium ion activities in electrically driven cardiac Purkinje fibers under conditions that change the intracellular sodium or calcium level (tetrodotoxin, strophanthidin, high calcium, and norepinephrine). Tetrodotoxin (TTX; 1-5 X 10(-6)M) shifted the action potential plateau to more negative values, shortened the action potential duration, and decreased the contractile tension and the intracellular sodium ion activity (aiNa). The changes in tension and in aiNa caused by TTX appear to be related since they had similar time courses. Strophanthidin (2-5 X 10(-7)M) increased tension and aiNa less in the presence of TTX, and, for any given value of aiNa, tension was less than in the absence of TTX. Increasing extracellular calcium (from 1.8 to 3.3-3.6 mM) or adding norepinephrine (0.5-1 X 10(-6)M) increased tension and decreased aiNa less in the presence than in the absence of TTX. When two of the above procedures were combined, the results were different. Thus, during the increase in aiNa and tension caused by strophanthidin in the presence of TTX, increasing calcium or adding norepinephrine increased tension markedly but did not increase aiNa further. In a TTX-high calcium or TTX-norepinephrine solution, adding strophanthidin increased both tension and aiNa, and the increase in tension was far greater than in the presence of TTX alone. The results indicate that: (a) the contractile force in Purkinje fibers is affected by a change in aiNa; (b) a decrease in aiNa by TTX markedly reduces the inotropic effect of strophanthidin, possibly as a consequence of depletion of intracellular calcium; (c) increasing calcium influx with norepinephrine or high calcium in the TTX-strophanthidin solution produces a potentiation of tension development, even if aiNa does not increase further; and (d) when the calcium influx is already increased by high calcium or norepinephrine, strophanthidin has its usual inotropic effect even in the presence of TTX. In conclusion, the positive inotropic effect of strophanthidin requires that an increase in aiNa be associated with suitable calcium availability.


Sign in / Sign up

Export Citation Format

Share Document