ion activities
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 5)

H-INDEX

34
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 620
Author(s):  
Xinxin Li ◽  
Behrooz Azimzadeh ◽  
Carmen Enid Martinez ◽  
Murray B. McBride

Lead (Pb) solubility is commonly limited by dissolution–precipitation reactions of secondary mineral phases in contaminated soils and water. In the research described here, Pb solubility and free Pb2+ ion activities were measured following the precipitation of Pb minerals from aqueous solutions containing sulfate or carbonate in a 1:5 mole ratio in the absence and presence of phosphate over the pH range 4.0–9.0. Using X-ray diffraction and Fourier-transform infrared spectroscopic analysis, we identified anglesite formed in sulfate-containing solutions at low pH. At higher pH, Pb carbonate and carbonate-sulfate minerals, hydrocerussite and leadhillite, were formed in preference to anglesite. Precipitates formed in the Pb-carbonate systems over the pH range of 6 to 9 were composed of cerussite and hydrocerussite, with the latter favored only at the highest pH investigated. The addition of phosphate into the Pb-sulfate and Pb-carbonate systems resulted in the precipitation of Pb3(PO4)2 and structurally related pyromorphite minerals and prevented Pb sulfate and carbonate mineral formation. Phosphate increased the efficiency of Pb removal from solution and decreased free Pb2+ ion activity, causing over 99.9% of Pb to be precipitated. Free Pb2+ ion activities measured using the ion-selective electrode revealed lower values than predicted from thermodynamic constants, indicating that the precipitated minerals may have lower KSP values than generally reported in thermodynamic databases. Conversely, dissolved Pb was frequently greater than predicted based on a speciation model using accepted thermodynamic constants for Pb ion-pair formation in solution. The tendency of the thermodynamic models to underestimate Pb solubility while overestimating free Pb2+ activity in these systems, at least in the higher pH range, indicates that soluble Pb ion-pair formation constants and KSP values need correction in the models.


2021 ◽  
Author(s):  
Damien Degoulange ◽  
Nicolas Dubouis ◽  
Alexis Grimaud

Highly concentrated electrolytes were recently proposed to improve the performances of aqueous electrochemical systems by delaying the water splitting and increasing the operating voltage for battery applications. While advances were made regarding their implementation in practical devices, debate exists regarding the physical origin for the delayed water reduction occurring at the electrode/electrolyte interface. Evidently, one difficulty resides in our lack of knowledge regarding ions activity arising from this novel class of electrolyte, it being necessary to estimate the Nernst potential of associated redox reactions such as Li<sup>+</sup> intercalation or the hydrogen evolution reaction. In this work, we first measured the potential shift of electrodes selective to either Li<sup>+</sup>, H<sup>+</sup> or Zn<sup>2+</sup> ions from diluted to highly concentrated regimes in LiCl or LiTFSI solutions. Observing similar shifts for these different cations and environments, we establish that shifts in redox potentials from diluted to highly concentrated regime originates in large from an increase junction potential, it being dependent on the ions activity coefficients that increase with concentration. While our study shows that single ion activity coefficients, unlike mean ion activity coefficients, cannot be captured by any electrochemical means, we demonstrate that protons concentration increases by approximatively two orders of magnitude from 1 mol.kg<sup>-1</sup> to 15-20 mol.kg<sup>-1</sup> solutions. Combined with the increased activity coefficients, this increases the activity of protons and thus the pH of highly concentrated solutions which appears acidic.


2021 ◽  
Author(s):  
Damien Degoulange ◽  
Nicolas Dubouis ◽  
Alexis Grimaud

Highly concentrated electrolytes were recently proposed to improve the performances of aqueous electrochemical systems by delaying the water splitting and increasing the operating voltage for battery applications. While advances were made regarding their implementation in practical devices, debate exists regarding the physical origin for the delayed water reduction occurring at the electrode/electrolyte interface. Evidently, one difficulty resides in our lack of knowledge regarding ions activity arising from this novel class of electrolyte, it being necessary to estimate the Nernst potential of associated redox reactions such as Li<sup>+</sup> intercalation or the hydrogen evolution reaction. In this work, we first measured the potential shift of electrodes selective to either Li<sup>+</sup>, H<sup>+</sup> or Zn<sup>2+</sup> ions from diluted to highly concentrated regimes in LiCl or LiTFSI solutions. Observing similar shifts for these different cations and environments, we establish that shifts in redox potentials from diluted to highly concentrated regime originates in large from an increase junction potential, it being dependent on the ions activity coefficients that increase with concentration. While our study shows that single ion activity coefficients, unlike mean ion activity coefficients, cannot be captured by any electrochemical means, we demonstrate that protons concentration increases by approximatively two orders of magnitude from 1 mol.kg<sup>-1</sup> to 15-20 mol.kg<sup>-1</sup> solutions. Combined with the increased activity coefficients, this increases the activity of protons and thus the pH of highly concentrated solutions which appears acidic.


Nanomedicine ◽  
2020 ◽  
Vol 15 (29) ◽  
pp. 2871-2881
Author(s):  
Min Wei ◽  
Peihua Lin ◽  
Ying Chen ◽  
Ji Young Lee ◽  
Lingxiao Zhang ◽  
...  

Ion activities are tightly associated with brain physiology, such as intracranial cell membrane potential, neural activity and neuropathology. Thus, monitoring the ion levels in the brain is of great significance in neuroscience research. Recently, nanosensors have emerged as powerful tools for monitoring brain ion levels and dynamics. With controllable structures and functions, nanosensors have been intensively used for monitoring neural activity and cell function and can be used in disease diagnosis. Here, we summarize the recent advances in the design and application of ion level nanosensors at different physiological levels, aiming to draw a connection of the interrelated intracranial ion activities. Furthermore, perspectives on the rationally designed ion level nanosensors in understanding the brain functions are highlighted.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1020
Author(s):  
Yu-Jing Lin ◽  
Po-Yen Lin ◽  
Yu-Ping Chen ◽  
Hui-Ling Liu ◽  
Tsung-Ru Wu ◽  
...  

To measure the ion activities of cells, an easy-access and fully-integrated system is necessary in culture room with high cleanness and easy maintenance. A new sensor structure integrated with readout system based on light-addressable potentiometric sensor (LAPS) to quantitatively monitor real-time cell activity with the advantages of label free and 2D image ability is proposed. The difference of cell number and acidification could be easily observed by 2D images by means of this proposed methodology.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1021
Author(s):  
Po-Yen Lin ◽  
Yu-Jing Lin ◽  
Yu-Ping Chen ◽  
Hui-Ling Liu ◽  
Tsung-Ru Wu ◽  
...  

To investigate the ion activities of cells based on light-addressable potentiometric sensor (LAPS) platform, various high-dielectric constant sensing membrane were investigated the visibility and potential issue. Three different kinds of well-proven materials in semiconductor industry, such as Si3N4, NbOx, and TiN, are the promising sensing membranes to directly culture C3A cells. TiN and NbOx could be the potential candidate. The photocurrent and flatband voltage difference generated by acidification reaction is verified to observe by LAPS is the future.


2016 ◽  
Vol 104 (9) ◽  
pp. 663-671 ◽  
Author(s):  
Janne Lempinen ◽  
Jukka Lehto

Abstract Radiocarbon (14C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO3) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002–0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of 14C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.


Sign in / Sign up

Export Citation Format

Share Document