Contractile protein synthesis and myofibrillar organization in cultured rabbit cardiac myocytes

1992 ◽  
Vol 24 ◽  
pp. S26
Author(s):  
R DECKER
1991 ◽  
Vol 130 (2) ◽  
pp. 239-244 ◽  
Author(s):  
N. K. Green ◽  
M. D. Gammage ◽  
J. A. Franklyn ◽  
M. C. Sheppard

ABSTRACT Effects of thyroid status on expression of a variety of myocardial genes, such as those encoding contractile proteins, have been reported, as well as interactions between thyroid hormones and developmental and haemodynamic regulation of contractile protein synthesis. In addition, it is clear that developmental and haemodynamic factors regulate expression of specific proto-oncogenes, including c-myc, c-fos and H-ras, in the myocardium but the effect of thyroid status on such proto-oncogene products, which are proposed to play a critical signal-transducing role in the heart, has been previously unexplored. In order to determine whether changes in thyroid status are associated with changes in expression of these putative intracellular signals, we examined the effect of hypothyroidism and tri-iodothyronine (T3) treatment on myocardial levels of c-myc, c-fos and H-ras mRNAs in the rat. The induction of hypothyroidism was associated with a marked increase in myocardial c-myc, c-fos and H-ras mRNAs, changes reversed by 72 h of T3 replacement. Administration of T3 to euthyroid rats had no significant effect on myocardial c-myc or c-fos mRNAs, but inhibition of H-ras mRNA by T3 was evident. These observations demonstrating influences of thyroid status on expression of specific proto-oncogenes suggest that thyroid hormones, as well as exerting direct effects on expression of functionally important myocardial genes, also interact with the cellular transduction pathways mediated by the products of the c-myc, c-fos and H-ras genes. Journal of Endocrinology (1991) 130, 239–244


1983 ◽  
Vol 13 (4) ◽  
pp. 267-282 ◽  
Author(s):  
Michel Fontés ◽  
Josiane Coulon ◽  
Marie-Hélène Delgross ◽  
Yves Thouveny

2021 ◽  
Author(s):  
William J. Evans ◽  
Mahalakshmi Shankaran ◽  
Edward C. Smith ◽  
Carl Morris ◽  
Edna Nyangau ◽  
...  

2001 ◽  
Vol 281 (1) ◽  
pp. H161-H167 ◽  
Author(s):  
Allen D. Everett ◽  
Tamara D. Stoops ◽  
Angus C. Nairn ◽  
David Brautigan

Increased protein synthesis is the cardinal feature of cardiac hypertrophy. We have studied angiotensin II (ANG II)-dependent regulation of eukaryotic elongation factor-2 (eEF-2), an essential component of protein translation required for polypeptide elongation, in rat neonatal cardiac myocytes. eEF2 is fully active in its dephosphorylated state and is inhibited following phosphorylation by eEF2 kinase. ANG II treatment (10−10–10−7 M) for 30 min produced an AT1 receptor-specific and concentration- and time-dependent reduction in the phosphorylation of eEF-2. Protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin, but not the PP2B inhibitor FK506, attenuated ANG II-dependent dephosphorylation of eEF-2. ANG II activated mitogen-activated protein kinase, (MAPK) within 10 min of treatment, and blockade of MAPK activation with PD-98059 (1–20 nM) inhibited eEF-2 dephosphorylation. The effect of ANG II on eEF-2 dephosphorylation was also blocked by LY-29004 (1–20 nM), suggesting a role for phosphoinositide 3-kinase, but the mammalian target rapamycin inhibitor rapamycin (10–100 nM) had no effect. Together these results suggest that the ANG II-dependent increase in protein synthesis includes activation of eEF-2 via dephosphorylation by PP2A by a process that involves both PI3K and MAPK.


1993 ◽  
Vol 264 (2) ◽  
pp. H573-H582
Author(s):  
W. A. Clark ◽  
S. J. Rudnick ◽  
D. G. Simpson ◽  
J. J. LaPres ◽  
R. S. Decker

Previous studies have shown that the rates of protein synthesis observed in embryonic and neonatal heart cells in culture are as much as nine times greater than the rates of synthesis observed in the intact adult heart either in situ or in isolated perfusion studies. This study addressed whether adult cardiomyocytes in long-term culture maintain the protein synthetic capacity of the adult myocardium or, rather, whether the protein synthetic capacity expands or falls as adult cardiac myocytes progress in culture. Protein synthesis was evaluated in isolated adult feline cardiomyocytes maintained in serum and insulin-supplemented medium for up to 53 days in vitro. With the use of both pulse- and saturation-labeling techniques it was determined that the rate of protein synthesis in adult cardiomyocytes was maintained at a level very close to that observed in the intact heart for over 1 mo in culture. Saturation-labeling studies indicate a fractional rate of protein synthesis at 6.1%/day and an absolute synthesis rate of 1,300 nmol leucine incorporated.g protein-1.h-1. Pulse-labeling studies revealed an initial increase in protein synthesis rates during adaptation to culture and a further increase after activation of beating and cellular hypertrophy.


1986 ◽  
Vol 18 ◽  
pp. 66-66
Author(s):  
S SCHREIBER ◽  
F REFF ◽  
C EVANS ◽  
M ORATZ ◽  
M ROTHSCHILD

Metabolism ◽  
2004 ◽  
Vol 53 (6) ◽  
pp. 710-715 ◽  
Author(s):  
Takeshi Tokudome ◽  
Takeshi Horio ◽  
Fumiki Yoshihara ◽  
Shin-ichi Suga ◽  
Yuhei Kawano ◽  
...  

2001 ◽  
Vol 280 (4) ◽  
pp. H1861-H1868 ◽  
Author(s):  
Eiji Hiraoka ◽  
Seinosuke Kawashima ◽  
Tomosaburo Takahashi ◽  
Yoshiyuki Rikitake ◽  
Tadahiro Kitamura ◽  
...  

The activation of phosphatidylinositol (PI) 3-kinase and Akt/protein kinase B (PKB) by tumor necrosis factor (TNF)-α and their roles on stimulation of protein synthesis were investigated in cultured neonatal rat cardiac myocytes. Treatment of cells with TNF-α resulted in enlargement of cell surface area and stimulation of protein synthesis without affecting myocyte viability. TNF-α induced marked activation of PI3-kinase and Akt/PKB, and the activation of PI3-kinase and Akt/PKB was rapid (maximal at 10 and 15 min, respectively) and concentration dependent. Akt/PKB activation by TNF-α was inhibited by a PI3-kinase-specific inhibitor LY-294002 and adenovirus-mediated expression of a dominant negative mutant of PI3-kinase, indicating that TNF-α activates Akt/PKB through PI3-kinase activation. Furthermore, TNF-α-induced protein synthesis was inhibited by pretreatment with LY-294002 and expression of a dominant negative mutant of PI3-kinase or Akt/PKB. These results indicate that activation of the PI3-kinase-Akt/PKB pathway plays an essential role in protein synthesis induced by TNF-α in cardiac myocytes.


Sign in / Sign up

Export Citation Format

Share Document