Asymmetric segregation of the complementary sex-factor DNA strands during conjugation in Escherichia coli

1970 ◽  
Vol 53 (3) ◽  
pp. 287-303 ◽  
Author(s):  
Daniel Vapnek ◽  
W.Dean Rupp
Keyword(s):  
2006 ◽  
Vol 38 (4) ◽  
pp. 1071-1097 ◽  
Author(s):  
Andrew G. Hart ◽  
Servet Martínez ◽  
Leonardo Videla

We propose a simple model for interaction between gene candidates in the two strands of bacterial DNA (deoxyribonucleic acid). Our model assumes that ‘final’ genes appear in one of the two strands, that they do not overlap (in bacteria there is only a small percentage of overlap), and that the final genes maximize the occupancy rate, which is defined to be the proportion of the genome occupied by coding zones. We are more concerned with describing the organization and distribution of genes in bacterial DNA than with the very hard problem of identifying genes. To this end, an algorithm for selecting the final genes according to the previously outlined maximization criterion is proposed. We study the graphical and probabilistic properties of the model resulting from applying the maximization procedure to a Markovian representation of the genic and intergenic zones within the DNA strands, develop theoretical bounds on the occupancy rate (which, in our view, is a rather intractable quantity), and use the model to compute quantities of relevance to the Escherichia coli genome and compare these to annotation data. Although this work focuses on genomic modelling, we point out that the proposed model is not restricted to applications in this setting. It also serves to model other resource allocation problems.


2000 ◽  
Vol 28 (5) ◽  
pp. A164-A164
Author(s):  
D. Gawel ◽  
P. Jonczyk ◽  
I. J. Fijalkowska ◽  
R.M. Schaaper
Keyword(s):  

Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 631-642 ◽  
Author(s):  
S T Lovett ◽  
P T Drapkin ◽  
V A Sutera ◽  
T J Gluckman-Peskind

Abstract In the genomes of many organisms, deletions arise between tandemly repeated DNA sequences of lengths ranging from several kilobases to only a few nucleotides. Using a plasmid-based assay for deletion of a 787-bp tandem repeat, we have found that a recA-independent mechanism contributes substantially to the deletion process of even this large region of homology. No Escherichia coli recombination gene tested, including recA, had greater than a fivefold effect on deletion rates. The recA-independence of deletion formation is also observed with constructions present on the chromosome. RecA promotes synapsis and transfer of homologous DNA strands in vitro and is indispensable for intermolecular recombination events in vivo measured after conjugation. Because deletion formation in E. coli shows little or no dependence on recA, it has been assumed that homologous recombination contributes little to the deletion process. However, we have found recA-independent deletion products suggestive of reciprocal crossovers when branch migration in the cell is inhibited by a ruvA mutation. We propose a model for recA-independent crossovers between replicating sister strands, which can also explain deletion or amplification of repeated sequences. We suggest that this process may be initiated as post-replicational DNA repair; subsequent strand misalignment at repeated sequences leads to genetic rearrangements.


1993 ◽  
Vol 14 (4) ◽  
pp. 645-651 ◽  
Author(s):  
John M. Kokontis ◽  
Stephen S. Tsung ◽  
Judith Vaughan-Johnson ◽  
Hongmee Lee ◽  
Ronald G. Harvey ◽  
...  

2018 ◽  
Author(s):  
Amit Bhardwaj ◽  
Debarghya Ghose ◽  
Krishan Gopal Thakur ◽  
Dipak Dutta

AbstractThe nick translation property of DNA polymerase I (Pol I) ensures the maturation of Okazaki fragments by removing primer RNAs and facilitating ligation. However, prolonged nick translation traversing downstream DNA is an energy wasting futile process, as Pol I simultaneously polymerizes and depolymerizes at the nick sites utilizing energy-rich dNTPs. Using an in vitro assay system, we demonstrate that the β-clamp of the Escherichia coli replisome strongly inhibits nick translation on the DNA substrate. To do so, β-clamp inhibits the strand displacement activity of Pol I by interfering with the interaction between the finger subdomain of Pol I and the downstream primer-template junction. Conversely, β-clamp stimulates the 5’ exonuclease property of Pol I to cleave single nucleotides or shorter oligonucleotide flaps. This single nucleotide flap removal at high frequency increases the probability of ligation between the upstream and downstream DNA strands at an early phase, terminating nick translation. Besides β-clamp-mediated ligation helps DNA ligase to seal the nick promptly during the maturation of Okazaki fragments.


1973 ◽  
Vol 80 (3) ◽  
pp. 477-503 ◽  
Author(s):  
O. Pierucci ◽  
C. Zuchowski

Sign in / Sign up

Export Citation Format

Share Document