High-resolution nonlinear raman spectroscopy of small molecules

1986 ◽  
Vol 141 ◽  
pp. 195-202 ◽  
Author(s):  
H.W. Schrötter ◽  
H. Berger ◽  
B. Lavorel
1987 ◽  
Vol 48 (C7) ◽  
pp. C7-761-C7-762
Author(s):  
B. LAVOREL ◽  
G. MILLOT ◽  
R. SAINT-LOUP ◽  
M. L. GONZE ◽  
J. SANTOS ◽  
...  

2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1954 ◽  
Vol 32 (5) ◽  
pp. 330-338 ◽  
Author(s):  
B. P. Stoicheff

An apparatus for obtaining intense Raman spectra of gases excited by the Hg 4358 line is described. It consists of a mirror-type Raman tube irradiated by two high-current mercury lamps, completely enclosed in a reflector of magnesium oxide. The lamps are externally water-cooled along their entire length and emit sharp lines of high intensity.Rotational Raman spectra of gases at a pressure of 1 atm. have been photographed in the second order of a 21 ft. grating in exposure times of 6 to 24 hr. The Raman lines are sharp and a resolving power of about 100,000 has been achieved. It will be possible to resolve the rotational Raman spectra, and hence to evaluate the rotational constants of molecules having moments of inertia of up to 300 × 10−10 gm. cm.2 Such investigations will be especially useful for non-polar molecules.


1960 ◽  
Vol 38 (11) ◽  
pp. 1516-1525 ◽  
Author(s):  
K. Suryanarayana Rao ◽  
B. P. Stoicheff ◽  
R. Turner

The pure rotational spectra of gaseous Zn(CH3)2, Cd(CH3)2, Hg(CH3)2, and of the fully deuterated molecules have been photographed with a 21-ft grating. The spectra are typical of symmetric top molecules and consist of many evenly spaced rotational lines having a separation of about 0.45 cm−1. An analysis of the spectra yielded the rotational constants (in cm−1)[Formula: see text]From these constants the following metal—carbon bond lengths were determined: Zn—C = 1.929 Å, Cd—C = 2.112 Å, and Hg—C = 2.094 Å. Relations for the C—H bond lengths and HCH angles were also obtained.


ChemPhysChem ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Yao Zhang ◽  
Rui Zhang ◽  
Song Jiang ◽  
Yang Zhang ◽  
Zhen-Chao Dong

ChemPhysChem ◽  
2017 ◽  
Vol 18 (2) ◽  
pp. 265-265
Author(s):  
Tanja Deckert-Gaudig ◽  
Vincent Pichot ◽  
Denis Spitzer ◽  
Volker Deckert

Sign in / Sign up

Export Citation Format

Share Document