scholarly journals Mock finitely generated Gorenstein injective modules and isolated singularities

1994 ◽  
Vol 96 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Edgar E. Enochs ◽  
Overtoun M.G. Jenda
2013 ◽  
Vol 12 (04) ◽  
pp. 1250197
Author(s):  
REZA SAZEEDEH

Let (R,[Formula: see text]) be a commutative Noetherian local ring and let M and N be nonzero finitely generated R-modules of finite injective dimension and finite Gorenstein injective dimension, respectively. In this paper, we prove a generalization of Ischebeck formula, that is [Formula: see text].


Author(s):  
David A. Hill

AbstractA module is uniserial if its lattice of submodules is linearly ordered, and a ring R is left serial if R is a direct sum of uniserial left ideals. The following problem is considered. Suppose the injective hull of each simple left R-module is uniserial. When does this imply that the indecomposable injective left R-modules are uniserial? An affirmative answer is known when R is commutative and when R is Artinian. The following result is proved.Let R be a left serial ring and suppose that for each primitive idempotent e, eRe has indecomposable injective left modules uniserial. The following conditions are equivalent. (a) The injective hull of each simple left R-module is uniserial. (b) Every indecomposable injective left R-module is univerial. (c) Every finitely generated left R-module is serial.The rest of the paper is devoted to a study of some non-Artinian serial rings which serve to illustrate this theorem.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


1993 ◽  
Vol 21 (10) ◽  
pp. 3489-3501 ◽  
Author(s):  
Edgar E. Enochs ◽  
Overtoun M.G. Jenda

2013 ◽  
Vol 12 (07) ◽  
pp. 1350039 ◽  
Author(s):  
JIANGSHENG HU ◽  
DONGDONG ZHANG

Let S and R be rings and SCR a semidualizing bimodule. We define and study GC-FP-injective R-modules, and these modules are exactly C-Gorenstein injective R-modules defined by Holm and Jørgensen provided that S = R is a commutative Noetherian ring. We mainly prove that the category of GC-FP-injective R-modules is a part of a weak AB-context, which is dual of weak AB-context in the terminology of Hashimoto. In particular, this allows us to deduce the existence of certain Auslander–Buchweitz approximations for R-modules with finite GC-FP-injective dimension. As an application, a new model structure in Mod R is given.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 935-946 ◽  
Author(s):  
Majid Rahro Zargar ◽  
Hossein Zakeri

Let (R, 𝔪) be a commutative Noetherian local ring and M an R-module which is relative Cohen-Macaulay with respect to a proper ideal 𝔞 of R, and set n := ht M𝔞. We prove that injdim M < ∞ if and only if [Formula: see text] and that [Formula: see text]. We also prove that if R has a dualizing complex and Gid RM < ∞, then [Formula: see text]. Moreover if R and M are Cohen-Macaulay, then Gid RM < ∞ whenever [Formula: see text]. Next, for a finitely generated R-module M of dimension d, it is proved that if [Formula: see text] is Cohen-Macaulay and [Formula: see text], then [Formula: see text]. The above results have consequences which improve some known results and provide characterizations of Gorenstein rings.


2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


Sign in / Sign up

Export Citation Format

Share Document