scholarly journals Electronic-excitation transfer collisions in flames—V. Cross sections for quenching and doublet-mixing of K(42P)-doublet by N2, O2, H2 and H2O

1974 ◽  
Vol 14 (10) ◽  
pp. 1079-1083 ◽  
Author(s):  
P.L. Lijnse ◽  
J.C. Hornman
Author(s):  
Yuk L. Yung ◽  
William B. DeMore

In this book we are concerned primarily with disequilibrium chemistry, of which the sun is the principal driving force. The sun is not, however, the only source of disequilibrium chemistry in the solar system. We briefly discuss other minor energy sources such as the solar wind, starlight, precipitation of energetic particles, and lightning. Note that these sources are not independent. For example, the ultimate energy source of the magnetospheric particles is the solar wind and planetary rotation; the energy source for lightning is atmospheric winds powered by solar irradiance. Only starlight and galactic cosmic rays are completely independent of the sun. While the sun is the energy source, the atoms and molecules in the planetary atmospheres are the receivers of this energy. For atoms the interaction with radiation results in three possibilities: (a) resonance scattering, (b) absorption followed by fluorescence, and (c) ionization. lonization usually requires photons in the extreme ultraviolet. The interaction between molecules and the radiation field is more complicated. In addition to the above (including Rayleigh and Raman scattering) we can have (d) dissociation, (e) intramolecular conversion, and (f) vibrational and rotational excitation. Note that processes (a)-(e) involve electronic excitation; process (f) usually involves infrared radiation that is not energetic enough to cause electronic excitation. The last process is important for the thermal budget of the atmosphere, a subject that is not pursued in this book. Scattering and fluorescence are a source of airglow and aurorae and provide valuable tools for monitoring detailed atomic and molecular processes in the atmosphere. Processes (c) and (d) are most important for determining the chemical composition of planetary atmospheres. Interesting chemical reactions are initiated when the absorption of solar energy leads to ionization or the breaking of chemical bonds. In this chapter we provide a survey of the absorption cross sections of selected atoms and molecules. The selection is based on the likely importance of these species in planetary atmospheres.


Sign in / Sign up

Export Citation Format

Share Document