planetary rotation
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 41)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 215
Author(s):  
Wei Zhong ◽  
Cong Yu

Abstract Kepler’s observation shows that many of the detected planets are super-Earths. They are inside a range of critical masses overlapping the core masses (2–20 M ⊕), which would trigger the runaway accretion and develop the gas giants. Thus, super-Earths/sub-Neptunes can be formed by restraining runaway growth of gaseous envelopes. We assess the effect of planetary rotation in delaying the mass growth. The centrifugal force, induced by spin, will offset a part of the gravitational force and deform the planet. Tracking the change in structure, we find that the temperature at the radiative–convective boundary (RCB) is approximate to the boundary temperature. Since rotation reduces the radiation energy densities in the convective and radiative layers, RCB will penetrate deeper. The cooling luminosity would decrease. Under this condition, the evolutionary timescale can exceed the disk lifetime (10 Myr), and a super-Earth/sub-Neptune could be formed after undergoing additional mass-loss processes. In the dusty atmosphere, even a lower angular velocity can also promote a super-Earth/sub-Neptune forming. Therefore, we conclude that rotation can slow down the planet’s cooling and then promote a super-Earth/sub-Neptune forming.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
A. R. Jones ◽  
M. Wolff ◽  
M. Alshamsi ◽  
M. Osterloo ◽  
P. Bay ◽  
...  

AbstractThe Emirates Exploration Imager (EXI) on-board the Emirates Mars Mission (EMM) offers both regional and global imaging capabilities for studies of the Martian atmosphere. EXI is a framing camera with a field-of-view (FOV) that will easily capture the martian disk at the EMM science orbit periapsis. EXI provides 6 bandpasses nominally centered on 220, 260, 320, 437, 546, 635 nm using two telescopes (ultraviolet (UV) and visible(VIS)) with separate optics and detectors. Images of the full-disk are acquired with a resolution of 2–4 km per pixel, where the variation is driven by periapsis and apoapsis points of the orbit, respectively. By combining multiple observations within an orbit with planetary rotation, EXI is able to provide diurnal sampling over most of the planet on the scale of 10 days. As a result, the EXI dataset allows for the delineation of diurnal and seasonal timescales in the behavior of atmospheric constituents such as water ice clouds and ozone.This combination of temporal and spatial distinguishes EXI from somewhat similar imaging systems, including the Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) (Malin et al. in Icarus 194(2):501–512, 2008) and the various cameras on-board the Hubble Space Telescope (HST; e.g., James et al. in J. Geophys. Res. 101(E8):18,883–18,890, 1996; Wolff et al. in J. Geophys. Res. 104(E4):9027–9042, 1999). The former, which has comparable spatial and spectral coverage, possesses a limited local time view (e.g., mid-afternoon). The latter, which provides full-disk imaging, has limited spatial resolution through most of the Martian year and is only able to provide (at most) a few observations per year given its role as a dedicated, queue-based astrophysical observatory. In addition to these unique attributes of the EXI observations, the similarities with other missions allows for the leveraging of both past and concurrent observations. For example, with MARCI, one can build on the ∼6 Mars years of daily global UV images as well as those taken concurrently with EXI.


Author(s):  
Argel Ramírez Reyes ◽  
Da Yang

AbstractTropical cyclones (TCs) are among the most intense and feared storms in the world. What physical processes lead to cyclogenesis remains the most mysterious aspect of TC physics. Here, we study spontaneous TC genesis in rotating radiative-convective equilibrium using cloud-resolving simulations over an f-plane with constant sea-surface temperature. Previous studies proposed that spontaneous TC genesis requires either radiative or surface-flux feedbacks. To test this hypothesis, we perform mechanism-denial experiments, in which we switch off both feedback processes in numerical simulations. We find that TCs can self-emerge even without radiative and surface-flux feedbacks. Although these feedbacks accelerate the genesis and impact the size of the TCs, TCs in the experiments without them can reach similar intensities as those in the control experiment. We show that TC genesis is associated with an increase in the Available Potential Energy (APE); and that convective heating dominates the APE production. Our result suggests that spontaneous TC genesis may result from a cooperative interaction between convection and circulation, and that radiative and surface-flux feedbacks accelerate the process. Furthermore, we find that increasing the planetary rotation favors spontaneous TC genesis.


Author(s):  
Bishakdatta Gayen ◽  
Ross W. Griffiths

Global differences of temperature and buoyancy flux at the ocean surface are responsible for small-scale convection at high latitudes, global overturning, and the top-to-bottom density difference in the oceans. With planetary rotation the convection also contributes to the large-scale horizontal, geostrophic circulation, and it crucially involves a 3D linkage between the geostrophic circulation and vertical overturning. The governing dynamics of such a surface-forced convective flow are fundamentally different from Rayleigh–Bénard convection, and the role of buoyancy forcing in the oceans is poorly understood. Geostrophic balance adds to the constraints on transport in horizontal convection, as illustrated by experiments, theoretical scaling, and turbulence-resolving simulations for closed (mid-latitude) basins and an annulus or reentrant zonal (circumpolar) channel. In these geometries, buoyancy drives either horizontal mid-latitude gyre recirculations or a strong Antarctic Circumpolar Current, respectively, in addition to overturning. At large Rayleigh numbers the release of available potential energy by convection leads to turbulent mixing with a mixing efficiency approaching unity. Turbulence-resolving models are also revealing the relative roles of wind stress and buoyancy when there is mixed forcing, and in future work they need to include the effects of turbulent mixing due to energy input from tides. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Xinyi Song ◽  
Jun Yang

Spatial heterogeneity and temporal variability are general features in planetary weather and climate, due to the effects of planetary rotation, uneven stellar flux distribution, fluid motion instability, etc. In this study, we investigate the asymmetry and variability in the transmission spectra of 1:1 spin–orbit tidally locked (or called synchronously rotating) planets around low-mass stars. We find that for rapidly rotating planets, the transit atmospheric thickness of the evening terminator (east of the substellar region) is significantly larger than that of the morning terminator (west of the substellar region). The asymmetry is mainly related to the spatial heterogeneity in ice clouds, as the contributions of liquid clouds and water vapor are smaller. The underlying mechanism is that there are always more ice clouds on the evening terminator, due to the combined effect of coupled Rossby–Kelvin waves and equatorial superrotation that advect vapor and clouds to the east, especially at high levels of the atmosphere. For slowly rotating planets, the asymmetry reverses (the morning terminator has a larger transmission depth than the evening terminator), but the magnitude is small or even negligible. For both rapidly and slowly rotating planets, there is strong variability in the transmission spectra. The asymmetry signal is nearly impossible to be observed by the James Webb Space Telescope (JWST), because the magnitude of the asymmetry (about 10 ppm) is smaller than the instrumental noise and the high variability further increases the challenge.


Author(s):  
Gyula M. Szabó ◽  
Szilárd Kálmán ◽  
Theodor Pribulla ◽  
Antonio Claret ◽  
Lorenzo V. Mugnai ◽  
...  

AbstractIn this paper we describe the photometry instruments of Ariel, consisting of the VISPhot, FGS1 and FGS2 photometers in the visual and mid-IR wavelength. These photometers have their own cadence, which can be independent from each other and the cadence of the spectral instruments. Ariel will be capable to do high cadence and high precision photometry in independent bands. There is also a possibility for synthetic Jsynth, Hsynth, and wide-band thermal infrared photometry from spectroscopic data. Although the cadence of the synthetic bands will be identical to that of the spectrographs, the precision of synthetic photometry in the suggested synthetic bands will be at least as precise as the optical data. We present the accuracy of these instruments. We also review selected fields of new science which will be opened up by the possibility of high cadence multiband space photometry, including stellar rotation, spin-orbit misalignment, orbital precession, planetary rotation and oblateness, tidal distortions, rings, and moons.


2021 ◽  
Author(s):  
Binzheng Zhang

<p>The classic Dungey cycle plays an essential role in understanding the dynamics of the terrestrial magnetosphere. However, its direct applicability to planetary magnetospheres such as Jupiter is limited, especially when the planetary rotation is much faster than the Earth. We use a series of numerical experiments to show the transition of the terrestrial magnetosphere from a classic Dungey cycle, convection-dominated system to rotation-dominated configurations. The numerical experiments use the Earth's magnetosphere-ionosphere system as a testbed, with modified rotation speed to increase the influence of planetary rotation over solar wind driving, characterized by the ratio between the solar wind merging potential and the polar cap rotation potential. Results show that when the rotation potential of the polar magnetosphere becomes comparable to the merging potential of the solar wind, the classic Dungey cycle is modified by azimuthal transport of magnetic flux, resulting in a more closed polar magnetosphere with a crescent-shaped open flux region in the ionosphere. These numerical experiments provide a theoretical framework for understanding the fundamentals of magnetospheric physics, which is potentially applicable to the Saturn, Jupiter, and exo-planetary systems.</p>


2021 ◽  
Vol 78 (5) ◽  
pp. 1445-1463
Author(s):  
Jonathan L. Mitchell ◽  
Spencer A. Hill

AbstractWeak-temperature-gradient influences from the tropics and quasigeostrophic influences from the extratropics plausibly constrain the subtropical-mean static stability in terrestrial atmospheres. Because mean descent acting on this static stability is a leading-order term in the thermodynamic balance, a state-invariant static stability would impose constraints on the Hadley cells, which this paper explores in simulations of varying planetary rotation rate. If downdraft-averaged effective heating (the sum of diabatic heating and eddy heat flux convergence) too is invariant, so must be vertical velocity—an “omega governor.” In that case, the Hadley circulation overturning strength and downdraft width must scale identically—the cell can strengthen only by widening or weaken only by narrowing. Semiempirical scalings demonstrate that subtropical eddy heat flux convergence weakens with rotation rate (scales positively) while diabatic heating strengthens (scales negatively), compensating one another if they are of similar magnitude. Simulations in two idealized, dry GCMs with a wide range of planetary rotation rates exhibit nearly unchanging downdraft-averaged static stability, effective heating, and vertical velocity, as well as nearly identical scalings of the Hadley cell downdraft width and strength. In one, eddy stresses set this scaling directly (the Rossby number remains small); in the other, eddy stress and bulk Rossby number changes compensate to yield the same, ~Ω−1/3 scaling. The consistency of this power law for cell width and strength variations may indicate a common driver, and we speculate that Ekman pumping could be the mechanism responsible for this behavior. Diabatic heating in an idealized aquaplanet GCM is an order of magnitude larger than in dry GCMs and reanalyses, and while the subtropical static stability is insensitive to rotation rate, the effective heating and vertical velocity are not.


2021 ◽  
Vol 34 (9) ◽  
pp. 3543-3554
Author(s):  
Tyler Cox ◽  
Kyle C. Armour ◽  
Gerard H. Roe ◽  
Aaron Donohoe ◽  
Dargan M. W. Frierson

AbstractAtmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.


Author(s):  
Spencer A. Hill ◽  
Simona Bordoni ◽  
Jonathan L. Mitchell

AbstractHow far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sinφ, where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling.


Sign in / Sign up

Export Citation Format

Share Document