A note to the stability of forced periodic response in third order non-linear systems

1979 ◽  
Vol 63 (1) ◽  
pp. 147
Author(s):  
A. Tondl
2017 ◽  
Vol 40 (12) ◽  
pp. 3458-3465 ◽  
Author(s):  
Zheng Wang ◽  
Jianping Yuan

In this paper, an adaptive composite anti-disturbance control structure is constructed for a class of non-linear systems with dynamic non-harmonic multisource disturbances. The key point of this paper is that a kind of non-harmonic disturbance, which has non-linear internal dynamics and complex features, is involved. A non-linear exogenous system is employed to describe the dynamic non-harmonic disturbances and several useful assumptions are introduced. By introducing a non-linear damping term, a novel adaptive non-linear disturbance observer is constructed. Based on the disturbance/uncertainty estimation and attenuation (DUEA) schemes, a composite anti-disturbance control structure is synthesized. Meanwhile, a new sufficient condition is derived and the stability of the closed-loop system is proved. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.


Author(s):  
G-C Luh ◽  
C-Y Wu

The inverse dynamics approach has been widely utilized in the control problem of various practical non-linear systems in recent years. This paper demonstrates a feedforward-feedback controller scheme of a non-linear plant whose dynamics are unknown and uncertain. The feedforward controller, an inverse NARX model (non-linear autoregressive model with exogenous inputs), provides only coarse control, whereas the feedback controller is used to handle unmodelled dynamics and disturbance. The inverse NARX model is derived by inverting the forward NARX model identified using genetic algorithms. A parallel-type NARX model whose outputs of the identification model are fed back into the identification model is adopted in the identification procedure to include the stability examination numerically. Both experimental and simulation results demonstrate that the proposed controller provides very good performance in the problems of input estimation and output tracking.


2001 ◽  
Vol 291 (1) ◽  
pp. 11-16 ◽  
Author(s):  
I.M. Gléria ◽  
A. Figueiredo ◽  
T.M. Rocha Filho

Sign in / Sign up

Export Citation Format

Share Document